50,729 research outputs found
Light bottom squark and gluino confront electroweak precision measurements
We address the compatibility of a light sbottom (mass 2\sim 5.5 \gev) and a
light gluino (mass 12\sim 16 \gev) with electroweak precision measurements.
Such light particles have been suggested to explain the observed excess in the
quark production cross section at the Tevatron. The electroweak observables
may be affected by the sbottom and gluino through the SUSY-QCD corrections to
the vertex. We examine, in addition to the SUSY-QCD corrections, the
electroweak corrections to the gauge boson propagators from the stop which are
allowed to be light from the SU(2) symmetry. We find that this scenario is
strongly disfavored from electroweak precision measurements unless the heavier
sbottom mass eigenstate is lighter than 180\gev and the left-right mixing in
the stop sector is sufficiently large. This implies that one of the stops
should be lighter than about 98\gev.Comment: 4 pages, revtex, 2 figures. Reference added, version to appear in
Phys.Rev.Let
Lineal Trails of D2-D2bar Superstrings
We study the superstrings suspended between a D2- and an anti-D2-brane. We
quantize the string in the presence of some general configuration of gauge
fields over the (anti-)D-brane world volumes. The interstring can move only in
a specific direction that is normal to the difference of the electric fields of
each (anti-)D-branes. Especially when the electric fields are the same, the
interstring cannot move. We obtain the condition for the tachyons to disappear
from the spectrum.Comment: 15 pages with 4 figures, referenced added, Sec. 5 on the spectrum
made cleare
Super Jackstraws and Super Waterwheels
We construct various new BPS states of D-branes preserving 8 supersymmetries.
These include super Jackstraws (a bunch of scattered D- or (p,q)-strings
preserving supersymmetries), and super waterwheels (a number of D2-branes
intersecting at generic angles on parallel lines while preserving
supersymmetries). Super D-Jackstraws are scattered in various dimensions but
are dynamical with all their intersections following a common null direction.
Meanwhile, super (p,q)-Jackstraws form a planar static configuration. We show
that the SO(2) subgroup of SL(2,R), the group of classical S-duality
transformations in IIB theory, can be used to generate this latter
configuration of variously charged (p,q)-strings intersecting at various
angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries
as long as the `critical' Born-Infeld electric fields are along the common
direction.Comment: 23 pages, 10 figure
Magnetic susceptibility study of hydrated and non-hydrated NaxCoO2-yH2O single crystals
We have measured the magnetic susceptibility of single crystal samples of
non-hydrated NaxCoO2 (x ~ 0.75, 0.67, 0.5, and 0.3) and hydrated Na0.3CoO2-yH2O
(y ~ 0, 0.6, 1.3). Our measurements reveal considerable anisotropy between the
susceptibilities with H||c and H||ab. The derived anisotropic g-factor ratio
(g_ab/g_c) decreases significantly as the composition is changed from the
Curie-Weiss metal with x = 0.75 to the paramagnetic metal with x = 0.3. Fully
hydrated Na0.3CoO2-1.3H2O samples have a larger susceptibility than
non-hydrated Na0.3CoO2 samples, as well as a higher degree of anisotropy. In
addition, the fully hydrated compound contains a small additional fraction of
anisotropic localized spins.Comment: 6 pages, 5 figure
Fault-tolerant linear optics quantum computation by error-detecting quantum state transfer
A scheme for linear optical implementation of fault-tolerant quantum
computation is proposed, which is based on an error-detecting code. Each
computational step is mediated by transfer of quantum information into an
ancilla system embedding error-detection capability. Photons are assumed to be
subjected to both photon loss and depolarization, and the threshold region of
their strengths for scalable quantum computation is obtained, together with the
amount of physical resources consumed. Compared to currently known results, the
present scheme reduces the resource requirement, while yielding a comparable
threshold region.Comment: 9 pages, 7 figure
Spin diffusion of correlated two-spin states in a dielectric crystal
Reciprocal space measurements of spin diffusion in a single crystal of
calcium fluoride (CaF) have been extended to dipolar ordered states. The
experimental results for the component of the spin diffusion parallel with the
external field are cm/s for the
[001] direction and cm/s for the
[111] direction. The diffusion rates for dipolar order are significantly faster
than those for Zeeman order and are considerably faster than predicted by
simple theoretical models. It is suggested that constructive interference in
the transport of the two spin state is responsible for this enhancement. As
expected the anisotropy in the diffusion rates is observed to be significantly
less for dipolar order compared to the Zeeman case.Comment: 4 pages, 2 figures. Resubmitted to PRL - new figure added /
discussion expande
Resonating bipolarons
Electrons coupled to local lattice deformations end up in selftrapped
localized molecular states involving their binding into bipolarons when the
coupling is stronger than a certain critical value. Below that value they exist
as essentially itinerant electrons. We propose that the abrupt crossover
between the two regimes can be described by resonant pairing similar to the
Feshbach resonance in binary atomic collision processes. Given the
intrinsically local nature of the exchange of pairs of itinerant electrons and
localized bipolarons, we demonstrate the occurrence of such a resonance on a
finite-size cluster made out of metallic atoms surrounding a polaronic ligand
center.Comment: 7 pages, 4 figures, to be published in Europhysics Letter
Multi-spin dynamics of the solid-state NMR Free Induction Decay
We present a new experimental investigation of the NMR free induction decay
(FID) in a lattice of spin-1/2 nuclei in a strong Zeeman field. Following a
pi/2 pulse, evolution under the secular dipolar Hamiltonian preserves coherence
number in the Zeeman eigenbasis, but changes the number of correlated spins in
the state. The observed signal is seen to decay as single-spin, single-quantum
coherences evolve into multiple-spin coherences under the action of the dipolar
Hamiltonian. In order to probe the multiple-spin dynamics during the FID, we
measured the growth of coherence orders in a basis other than the usual Zeeman
eigenbasis. This measurement provides the first direct experimental observation
of the growth of coherent multiple-spin correlations during the FID.
Experiments were performed with a cubic lattice of spins (19F in calcium
fluoride) and a linear spin chain (19F in fluorapatite). It is seen that the
geometrical arrangement of the spins plays a significant role in the
development of higher order correlations. The results are discussed in light of
existing theoretical models.Comment: 7 pages, 6 figure
Abelian Dominance in Wilson Loops
It has been conjectured that the Abelian projection of QCD is responsible for
the confinement of color. Using a gauge independent definition of the Abelian
projection which does {\it not} employ any gauge fixing, we provide a strong
evidence for the Abelian dominance in Wilson loop integral. In specific we
prove that the gauge potential which contributes to the Wilson loop integral is
precisely the one restricted by the Abelian projection.Comment: 4 pages, no figure, revtex. Phys. Rev. D in pres
- …
