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We present a new experimental investigation of the NMR free induction decay �FID� in a lattice of spin-1 /2
nuclei in a strong Zeeman field. Following a � /2 pulse, evolution under the secular dipolar Hamiltonian
preserves the coherence number in the Zeeman eigenbasis, but changes the number of correlated spins in the
state. The observed signal is seen to decay as single-spin, single-quantum coherences evolve into multiple-spin
coherences under the action of the dipolar Hamiltonian. In order to probe the multiple-spin dynamics during
the FID, we measured the growth of coherence orders in a basis other than the usual Zeeman eigenbasis. This
measurement provides the first direct experimental observation of the growth of coherent multiple-spin corre-
lations during the FID. Experiments were performed with a cubic lattice of spins �19F in calcium fluoride� and
a linear spin chain �19F in fluorapatite�. It is seen that the geometrical arrangement of the spins plays a
significant role in the development of higher-order correlations. The results are discussed in light of existing
theoretical models.
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Solid-state NMR is an ideal test bed for studying coherent
quantum dynamics in a large Hilbert space. In this work, we
experimentally investigate the many-spin dynamics of the
NMR free induction decay. The free induction decay �FID� is
the response of the spin system following a � /2 pulse. In a
solid lattice of spin-1 /2 nuclei in a strong magnetic field, this
evolution is dominated by the secular dipolar Hamiltonian.
This is a classic problem in spin dynamics and has been well
studied since the early days of NMR.1–11

At the magnetic fields typically used in NMR experiments
��20 T�, the spin system is highly mixed at room tempera-
ture, and its equilibrium state is represented by a thermal
density matrix. If the external Zeeman field is much stronger
than the internal dipolar fields of the sample, the normalized
deviation density matrix in thermal equilibrium can be ap-
proximated as

�̂�0� = − �
j

Î jz. �1�

Following a � /2 pulse, the spins evolve under the secular
dipolar Hamiltonian,

Ĥint = �
j�k

Djk� Î jzÎkz −
1

4
�Î j+Îk− + Î j−Îk+�� . �2�

The strength of the dipolar coupling Djk between spins j and
k is given by

Djk =
�2�2

rjk
3 �1 − 3 cos2 � jk� , �3�

where � is the gyromagnetic ratio, rjk is the distance between
spins j and k, and � jk is the angle between the external mag-
netic field and internuclear vector r� jk. Since the Hamiltonian
is time independent, the formal solution of the Liouville-von
Neumann equation yields the density matrix of the spin sys-
tem at time t following the pulse as

�̂�t� = e−iĤintt/��̂�0�eiĤintt/�. �4�

An exact solution to this many-body problem has not been
found, but the equation can be expanded in a power series to
examine the short time behavior of the system:

�̂�t� = �̂�0� +
i

�
t��̂�0�,Ĥint� −

t2

2�2 ���̂�0�,Ĥint�,Ĥint� + . . . .

�5�

In an inductively detected NMR experiment �in which a coil
is used to measure the average magnetization in the trans-
verse plane�, the observed signal is given by

S�t� = ��Î+	 = � Tr
Î+�̂�t�� , �6�

where Î+=� j�Ijx+ iIjy� and � is a proportionality constant.
The only terms in �̂�t� that yield a nonzero trace in the above
equation and therefore contribute to the observed signal S�t�
are the single-spin angular momentum operators such as Î j−,
which are single-spin, single-quantum coherences. Single-
quantum coherences are off-diagonal terms of the density
matrix �in the Zeeman eigenbasis or the z basis� connecting
eigenstates with 	m= ±1 �corresponding to coherent super-
positions of these eigenstates�. Evaluating the commutators
in Eq. �5�,

�̂�t� = −
1

2�
j

�Î j+ + Î j−� +
3

2
it�

jk

Djk�− Î jzÎk+ + Î jzÎk−�

−
3

4
t2�

jkl

DlkDjk�Î jzÎlzÎk+ + Î jzÎlzÎk−� + ¯ . �7�

Substituting Eq. �7� into Eq. �6�, it can be seen that the ob-
servable magnetization decays during the evolution under

Ĥint because single-spin, single-quantum coherence terms are
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transformed to unobservable multiple-spin, single-quantum
coherence terms by the higher-order nested commutators.
The n-th term in the expansion in Eq. �5� has n-spin corre-
lations.

There has been much theoretical effort1–8 to predict the
shape of the FID in calcium fluoride �CaF2�. Calcium fluo-
ride is a standard test system for spin dynamics as the 19F
�spin-1 /2� nuclei are 100% abundant and form a simple cu-
bic lattice. The main goal has been to reproduce the decay
and beat pattern of the observed time-domain NMR signal.
For example, Engelsberg and Lowe10 measured up to 14 mo-
ments of the FID in CaF2, and these were found to be in
good agreement with theoretically calculated values for the
second to eighth moments. The odd moments of the FID are
zero, and the even moments are given by1

�8�

Evaluating the nested commutators becomes increasingly
challenging and the higher-order moments are difficult to
calculate. However, it is these higher moments that charac-
terize the many-spin correlations in the spin system. It can be
seen that the 2n-th moment arises from the �2n+1�-th term
in the expansion in Eq. �5�, which creates up to �2n+1�
correlated spins. The main weakness of the moment method
lies in the fact that the most important contribution to the
value of the higher moments comes from the tails of the FID,
which are acquired with the lowest signal-to-noise ratio
�SNR� in typical FID measurements.3

In this paper, we use a modified multiple-quantum NMR
technique14 to study multiple-spin dynamics during the FID.
Standard multiple-quantum techniques15–18 encode coher-
ence orders in the Zeeman eigenbasis �or z basis�, but coher-
ence numbers are conserved under the secular dipolar Hamil-
tonian in this basis.19 In our experiment we encode multiple-
quantum coherences in the x basis. The dipolar Hamiltonian
in the x basis is

Ĥint
x = −

1

2 �
j�k

Djk� Î jxÎkx −
1

4
�Î j+

x Îk−
x + Î j−

x Îk+
x ��

−
3

8 �
j�k

Djk�Î j+
x Îk+

x + Î j−
x Îk−

x � , �9�

and no longer conserves coherence order in this basis �we
use the superscript x to denote that the raising and lowering
operators are defined in the x basis; these operators are oth-
erwise assumed to be expressed in the z basis�. The coher-
ence orders are encoded by a collective rotation about the x
axis �which is the effective quantizing axis in this basis�.
Transforming the density matrix shown in Eq. �7� into the x
basis yields

�̂x�t� = − �
j

Î jx −
3

4
it�

jk

Djk�Î j+
x Îk+

x − Î j−
x Îk−

x �

+
3

8
t2�

jkl

DlkDjk�Î j+
x Îl+

x Îkx − Î j+
x Îl−

x Îkx − Î j−
x Îl+

x Îkx

+ Î j−
x Îl−

x Îkx� + . . . . �10�

From Eq. �10�, it can be seen that, starting from an initial Ix
state, even-order multiple-quantum coherences are created in
the x basis. It is possible to generate only odd-order coher-
ences using a y-basis encoding for the same initial state.

It is useful to consider the dipolar evolution of this highly
mixed state using the Liouville space formulation for
multiple-quantum dynamics suggested previously.17 The
density operator in Liouville space can represented as

�̂�t� = �
K=0

N

�
n=−K

K

�
p

gKnp�t�P̂Knp, �11�

where P̂Knp represents a basis operator that is a product of K
single-spin angular momentum operators, n is the coherence
order of the operator, and p is a label that identifies a par-
ticular configuration of spins having the same K and n. The
selection rules for the dipolar Hamiltonian in the Zeeman
basis are given by

	K = ± 1, 	n = 0. �12�

A projection of Liouville space onto the two-dimensional
plane spanned by K and n is shown in Fig. 1�a�. Following a
� /2 pulse, the trajectory in the Zeeman basis is indicated by
the arrows �only positive coherences are shown here; the
evolution is perfectly symmetric for negative n�. Increasing
numbers of spins are correlated following evolution under
the dipolar Hamiltonian, but the coherence number does not
change. Figure 1�b� shows the same evolution in the x basis,
where the selection rules are

	K = ± 1, 	n = 0, ± 2. �13�

Starting from an initial Ix state �K=1,n=0�, only even-order
coherences are observed. In this paper we characterize the
growth of these coherences.

The pulse sequence used in this experiment is shown in
Fig. 2. After an initial � /2 pulse, multiple-spin, single-
quantum states in the Zeeman basis are created during evo-
lution under the secular dipolar Hamiltonian, as described in

Eq. �7�. A 
Îx rotation encodes coherence orders in the x
basis, and a magic-echo sequence12 is used to refocus the
multiple-spin terms back to observable single-spin, single-

quantum coherence terms. The 
Îx rotation is obtained by
applying two � /2 pulses, with phases y+
 and ȳ, which

results in the propagator exp�i
Îz�exp�i
Îx�. The initial � /2

FIG. 1. Projection of Liouville space onto the two-dimensional
plane spanned by K and n, showing the dynamics of the FID in �a�
the Zeeman eigenbasis, and �b� the x basis. The arrows show the
allowed paths in each case.
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excitation pulse is also phase shifted by 
 to cancel out the

rotation about Îz. Since it is difficult to apply back-to-back
� /2 pulses without a delay between them �without introduc-
ing phase transients or allowing some dipolar evolution dur-
ing the pulses�, an evolution-suspension sequence needs to
be used in between the two � /2 pulses. In this experiment
we use a previously described 48-pulse evolution-suspension
sequence.13

The experiments were performed at room temperature at
2.35 T �94.2 MHz, 19F�, using a Bruker Avance spectrometer
and home-built probe. The samples used were a 1 mm3

single crystal of CaF2 with T1�7 s, and a crystal of fluora-
patite �FAp� with T1�200 ms. The FAp crystal is a mineral
crystal specimen from Durango, Mexico. Such natural crys-
tals are expected to have a number of interruptions in the
spin chains as well as a variety of other defects,20 as indi-
cated by the short T1. All experiments were conducted on
resonance. High-power 0.5 �s � /2 pulses were used for the
48-pulse evolution suspension sequence, while lower-power
1.5 �s � /2 were used during the magic-echo sequence, as
this sequence is more susceptible to phase-transient errors.
The phase 
 was incremented from 0 to 4� with 	

=� /32 to encode up to 32 quantum coherences for every
experiment. A fixed time point corresponding to the maxi-
mum intensity signal was sampled for each 
 value and Fou-
rier transformed with respect to 
 to obtain the coherence
order distribution at each dipolar evolution time t.

Figure 3 shows the coherence-order distribution observed
for CaF2 at various time points during the FID. At short
times, the maximum coherence order �nmax� corresponds to
the maximum number of correlated spins �Kmax, i.e., gKnp
=0 for K�Kmax�. At longer times, the maximum coherence
order observed in the experiment sets the lower limit of the
size of the spin correlation, since the SNR of higher-order
coherences might be too low to be observed.

Figure 4 shows the growth of the different coherence or-
ders in CaF2 during the FID. The inset shows the initial
oscillation between the zero- and double-quantum coher-
ences at short times �which corresponds to single- and two-
spin correlations, respectively� due to the resolved nearest-
neighbor coupling at the �100� and �110� directions. This
oscillation may be theoretically understood by considering
the time development of an isolated pair of spins under the
secular dipolar Hamiltonian �in the x basis�:

��t� =
1

2
cos3Dt

2
��I1x + I2x� −

i

4
sin3Dt

2
��I1+

x I2+
x − I1−

x I2−
x � ,

�14�

where D is the strength of the pairwise coupling. In an ex-
tended spin system, this oscillation is rapidly damped by
leakage from isolated pairs to higher-order correlations.21

The higher-order coherences �n4� are seen to follow a sig-
moidal growth curve. The higher-order coherences develop
later in time, and this progressive growth leads to a satura-
tion of the intensities of the lower-order coherences, consis-

FIG. 2. The pulse sequence used in this experiment. t is the
evolution time under the secular dipolar Hamiltonian. The 48-pulse
sequence was used to suppress the evolution of the internal Hamil-
tonian during the x-basis encoding step. A magic-echo sequence
was used to reverse the dipolar evolution. A delay ��=10 �s� was
inserted before the magic echo to push the echo out, in order to
minimize any pulse transients and receiver dead-time effects. The
duration of the spin-locking time in the magic-echo sequence is
2tlock, where tlock= t+2�+3�s.

FIG. 3. The x-basis coherence order distribution at various time
points under the evolution of the secular dipolar Hamiltonian in
CaF2. The multiple-quantum intensities have been renormalized to
set the intensity of the zero-quantum term to one in each case.

FIG. 4. The growth of multiple-spin correlations during the FID,
showing the sigmoidal fit to the initial growth data of each x-basis
coherence order �n4�, along ��110� direction in CaF2. The inset
shows the dynamics of n=0 and 2. The intensity of the signal for
each coherence order Sn is normalized with respect to the total
signal Stot, in order to compensate for imperfect refocusing of the
dipolar interaction.
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tent with the model in Fig. 1. As t increases, imperfect refo-
cusing of the dipolar evolution under the magic-echo
sequence results in a decay of the observed signal. In order to
remove this decay the intensity for each coherence order is
normalized with respect to the total signal measured at that
evolution time.

We have fit the initial growth of each coherence order to
the following sigmoidal function:

Sn�t� =
Cn

1 + e−�n�t−tn
onset�

. �15�

In Fig. 5 we plot the variation of �n and Cn as a function of
coherence order n. The parameter �n represents the underly-
ing rate at which the different coherence orders are trans-
formed, and should be dominated by the strength of the di-
polar couplings involved. It is seen that �n does not vary
with n, suggesting that the near-neighbor interactions domi-
nate the dynamics here. The mean dipolar-coupling strength
depends on the crystal orientation, so we measured �n with
the crystal oriented along the �111�, �110�, and �100� direc-
tions with respect to the external field. The mean dipolar-
coupling strength can be estimated by summing �D1j� over
the 26 nearest-neighbor spins for each crystal orientation.
For a simple cubic lattice, the ratio of these means is
1:1.45:1.87 for �111�, �110�, and �100�, in good agreement
with the ratios of �n shown in the figure. The values of Cn
are seen to decrease as the coherence number increases, in-
dependently of the crystal orientation. This is expected as the
total polarization is conserved, and the signal is progres-
sively spread over increasingly larger regions of the system
Hilbert space.

Figure 6 shows the onset time tn
onset of each of the x-basis

coherences for different orientations of the crystal. Physi-
cally, the onset time corresponds to the time required for a

specific coherence order to become observable in the experi-
ment. While a first glance at Eq. �7� would seem to suggest
that higher-order correlations should develop as tn, it is the
geometry of the spin system �the values of Dij� that ulti-
mately determines the rate at which the spin correlations
grow. The onset times depend on the rate at which the cor-
relations are spreading through the spin system, which in
turn depends on the value of the dipolar couplings. Thus, the
rate is expected to be fastest �shorter onset time�, with the
crystal oriented along the �100� direction and slowest �longer
onset time� for the crystal oriented along the �111� direction,
in agreement with the experimental data. The variation of
onset times with coherence order is also observed to depend
on the dimensionality of the spin system. The variation is
sublinear in the cubic CaF2 system and displays an approxi-
mate n2/3 dependence. The inset in Fig. 6 shows that the
onset times obtained for FAp, the quasi-one-dimensional spin
system, vary linearly with coherence number, in marked con-
trast to the results from CaF2.

A variety of models have been proposed to describe the
dynamics under a multiple-quantum Hamiltonian. The most
commonly used model involves a random walk among the

components of the Liouville-space basis set P̂Knp, subject to
the selection rules of the multiple-quantum Hamiltonian.17

The model replaces the Liouville-von Neumann equation by
a set of coupled rate equations with exponential solutions,

d

dt
g = R · g , �16�

where the vector g contains the coefficents gKnp. All possible
configurations that contribute to a particular coherence are
assumed to be present in equal measure, and the resulting
growth of the spin system is described by a hopping proce-
dure between the allowed points on the lattice �shown in Fig.
1�. Under this assumption, the hopping rates are solely de-

FIG. 5. The values of �n for different orientations in CaF2. The
left inset shows the ratios ��100� /��111� ��� and ���110� /��111� ���.
The calculated ratios of the mean dipolar-coupling strength, ob-
tained by averaging over 26 nearest neighbors, �100� / �111� �solid
line� and ��110� / �111� �dotted line� are also shown. The right inset
show the values of Cn’s for a different orientation in CaF2.

FIG. 6. The onset time of multiple-spin correlations for different
crystal orientations in CaF2. The inset shows the onset times for the
FAp sample. Odd coherence orders for the FAp sample were ob-
tained using a y-basis encoding on the same initial state. The con-
tinuous lines represent the best fits of Eq. �20� to the data, assuming
that the same equation is valid for the coherence number as well.
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termined by the degeneracies of the coupled states. The
model thus eliminates any oscillatory solutions and precludes
the possibility of quantum interference effects playing a role
in the evolution. The model also ignores the geometrical ar-
rangement of the spin system and the specific distribution of
dipolar-coupling coefficients responsible for driving the evo-
lution. All spin systems display a universal growth kinetics,
as long as the dynamics are scaled by a lattice parameter that
represents the mean dipolar-coupling strength of the system,
similar to the parameter �n obtained above. A numerical so-
lution of the coupled equations for the multiple-quantum
evolution was observed to yield sigmoidal growth curves for
the various coherence orders.17 Limitations to this model
have been discussed elsewhere.22

Munowitz and Mehring11 used this model to numerically
simulate the growth of multispin dynamics of the FID in a
21-spin system. In order to track the development of corre-
lations among the spins, they defined an induction time tK
over which a particular K-spin coherence reaches half its
maximum value. This parameter is very similar to the experi-
mentally measured onset times of the different coherence
orders described here. Figure 7 of Ref. 11 shows the varia-
tion of induction time with the number of correlated spins.
The numerical results show that the variation of the induc-
tion time is sublinear for small numbers of correlated spins
��10�, in agreement with the experimental data. For larger
numbers of correlated spins, however, there is a marked de-
viation from the sublinear behavior, as the effects of the fi-
nite system size �21 spins� begin to manifest themselves in
the simulations. The number of correlated spins would have
to approach the number of spins in the sample ��1021� be-
fore such effects would be observed experimentally. While
providing some insight into the growth of the dynamics for
the cubic spin systems, it is seen that the model does not do
a very good job at describing the one-dimensional spin sys-
tem. It is in this situation that the spin geometry plays a
dominant role.

Gleason and co-workers have proposed an alternate
model to describe the growth of spin correlations that em-
phasizes the geometrical ordering of spins.23 By aggregating
over the different configurations and coherence orders, i.e.,
summing over n and p in Eq. �11�, the density operator �̂ is
expressed as a sum of terms with spin number K and coeffi-
cients gK,

�̂�t� = �
K=0

N

gK�t�P̂K, �17�

where gKP̂K=�npgKnpP̂Knp. Essentially, this model assumes a
single effective K-spin operator that incorporates all the pos-
sible spin and spatial configurations of the K spins. The re-
sulting model for spin propagation through a lattice yields a
differential equation for the coefficients gK�t� of the form

d

dt
gK = − i�WK−1

f gK−1 + WK+1
r gK+1� , �18�

where the rate constants Wf and Wr correspond to the for-
ward and reverse rates, respectively. Under the assumption

that the spatial grouping of the K spins is continuous, and
that only the nearest-neighbor couplings are important, the
forward rate �and equivalently the reverse rate� can be ex-
pressed as WK

f �Dnnns, where D is the strength of the nearest
neighbor coupling, ns is the number of spins on the surface
of the spatial grouping, and nn is the number of neighboring
spins coupled to each spin. New spins are added on the sur-
face of the correlated spin cluster. While nn is a constant, the
term ns would differ significantly for spin systems of differ-
ent dimensionalities, and can be expressed as ns�K1−1/d,
where d is the dimensionality of the spin system. For a linear
spin chain, d=1 and ns is independent of K, while for a cubic
spin system, d=3 and ns�K2/3. While this model does not
discuss coherence order, the dimensional dependence does
agree with the experimental results, if the onset time charac-
terizes the effective rate constant. In the limit of large K, the
rate constants WK−1

f �WK+1
r , and the coefficients gK�t� are

approximately given by

gK�t� � iK−1�tanh��tK−1/d��K, �19�

where � is proportional to the mean dipolar-coupling
strength. With an appropriate choice of normalization, the
intensities �gK�t��2 obtained from Eq. �19� show the same
sigmoidal growth characteristics of the multiple quantum co-
herence intensities shown in Fig. 4. An onset time can be
obtained from Eq. �19� by setting �tanh��tK−1/d��2K=1/2,
yielding

t1/2 =
�

�
K1/d arctanh�2−1/2K� , �20�

where � is a constant scaling factor. Figure 6 shows the best
fit of Eq. �20� to the experimental data, assuming that the
model holds true for coherence number as well. It is seen that
there is excellent agreement at larger values of n for the
cubic CaF2 system. The values of � /� obtained from the fit
are 31.19 in the �111� direction, 25.74 in the �110� direction,
and 17.42 in the �001� direction. Their inverses are in the
ratio 1:1.48:1.79 for �111�:�110�:�100�, which is in excellent
agreement with the theoretically calculated values shown
earlier. For the linear FAp system, Eq. �20�, which is linear
for large K, is observed to be weakly superlinear at these
small values of K.24

The constancy of �n in the sigmoidal plots in Fig. 4 and
the good agreement observed between the observed onset
times and Eq. �20� indicate that the spin dynamics are domi-
nated by the nearest-neighbor interactions in this regime.
This is not surprising, as we are still operating in the short-
time regime. Higher-order spin processes, if significant,
would be expected to manifest themselves at later times,
leading to a deviation from the simple model behavior de-
scribed above.

In conclusion, we have presented a new experimental
method to characterize the multispin dynamics of the solid-
state NMR free induction decay. The initial creation of co-
herences were observed to follow a sigmoidal growth curve,
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with the onset times characterizing the dynamics of the spin
system. These dynamics in turn were critically dependent on
the geometrical arrangement of the spins, as expected.
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