244 research outputs found

    Agrp neuron activity is required for alcohol-induced overeating

    Get PDF
    Alcohol intake associates with overeating in humans. This overeating is a clinical concern, but its causes are puzzling, because alcohol (ethanol) is a calorie-dense nutrient, and calorie intake usually suppresses brain appetite signals. The biological factors necessary for ethanol-induced overeating remain unclear, and societal causes have been proposed. Here we show that core elements of the brain’s feeding circuits—the hypothalamic Agrp neurons that are normally activated by starvation and evoke intense hunger—display electrical and biochemical hyperactivity on exposure to dietary doses of ethanol in brain slices. Furthermore, by circuit-specific chemogenetic interference in vivo, we find that the Agrp cell activity is essential for ethanol-induced overeating in the absence of societal factors, in single-housed mice. These data reveal how a widely consumed nutrient can paradoxically sustain brain starvation signals, and identify a biological factor required for appetite evoked by alcohol

    Analytical model of brittle destruction based on hypothesis of scale similarity

    Full text link
    The size distribution of dust particles in nuclear fusion devices is close to the power function. A function of this kind can be the result of brittle destruction. From the similarity assumption it follows that the size distribution obeys the power law with the exponent between -4 and -1. The model of destruction has much in common with the fractal theory. The power exponent can be expressed in terms of the fractal dimension. Reasonable assumptions on the shape of fragments concretize the power exponent, and vice versa possible destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure

    ИНТЕГРАЦИОННЫЕ ПРОЦЕССЫ НА ПОСТСОВЕТСКОМ ПРОСТРАНСТВЕ (НА ПРИМЕРЕ ЕВРАЗИЙСКОГО ЭКОНОМИЧЕСКОГО СОЮЗА)

    Get PDF
    In this work authors consider the integration processes in the former Soviet Union which allowed to create the economic and political organizations between the former federal republics. And also on the example of the Euroasian Economic Union positive tendencies in increase in economic capacity of the countries of participants are defined.В данной работе авторы рассматривают интеграционные процессы на постсоветском пространстве, позволившие создать экономические и политические организации между бывшими союзными республиками. А также на примере Евразийского Экономического Союза определяются положительные тенденции в увеличении экономического потенциала стран участниц

    Projections from the Dorsomedial Division of the Bed Nucleus of the Stria Terminalis to Hypothalamic Nuclei in the Mouse

    Get PDF
    Acknowledgments: All the authors contributed to perform the experiments. SC designed the experiments, analyzed the data and wrote the paper. MB, JAG, DB and PYR edited the manuscript. This work was supported by the Region Franche-Comté, France (PYR), by The Francis Crick Institute (DB), by the Swiss National Science Foundation (PZ00P3_167934/1) and the Novartis Foundation for medical-biological research (19B145) (SC) The data that support the findings of this study are available from the corresponding author upon reasonable request.Peer reviewedPublisher PD

    Molecular Background of Leak K+ Currents: Two-Pore Domain Potassium Channels

    Get PDF
    Enyedi P, Czirjak G. Molecular Background of Leak K+ Currents: Two-Pore Domain Potassium Channels. Physiol Rev 90: 559-605, 2010; doi:10.1152/physrev.00029.2009.-Two-pore domain K+ (K-2P) channels give rise to leak (also called background) K+ currents. The well-known role of background K+ currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K-2P channel types) that this primary hyperpolarizing action is not performed passively. The K-2P channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e. g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K-2P channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K-2P channel family into the spotlight. In this review, we focus on the physiological roles of K-2P channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation

    Conductance Ratios and Cellular Identity

    Get PDF
    Recent experimental evidence suggests that coordinated expression of ion channels plays a role in constraining neuronal electrical activity. In particular, each neuronal cell type of the crustacean stomatogastric ganglion exhibits a unique set of positive linear correlations between ionic membrane conductances. These data suggest a causal relationship between expressed conductance correlations and features of cellular identity, namely electrical activity type. To test this idea, we used an existing database of conductance-based model neurons. We partitioned this database based on various measures of intrinsic activity, to approximate distinctions between biological cell types. We then tested individual conductance pairs for linear dependence to identify correlations. Contrary to experimental evidence, in which all conductance correlations are positive, 32% of correlations seen in this database were negative relationships. In addition, 80% of correlations seen here involved at least one calcium conductance, which have been difficult to measure experimentally. Similar to experimental results, each activity type investigated had a unique combination of correlated conductances. Finally, we found that populations of models that conform to a specific conductance correlation have a higher likelihood of exhibiting a particular feature of electrical activity. We conclude that regulating conductance ratios can support proper electrical activity of a wide range of cell types, particularly when the identity of the cell is well-defined by one or two features of its activity. Furthermore, we predict that previously unseen negative correlations and correlations involving calcium conductances are biologically plausible

    Probing Cellular Dynamics with a Chemical Signal Generator

    Get PDF
    Observations of material and cellular systems in response to time-varying chemical stimuli can aid the analysis of dynamic processes. We describe a microfluidic “chemical signal generator,” a technique to apply continuously varying chemical concentration waveforms to arbitrary locations in a microfluidic channel through feedback control of the interface between parallel laminar (co-flowing) streams. As the flow rates of the streams are adjusted, the channel walls are exposed to a chemical environment that shifts between the individual streams. This approach can be used to probe the dynamic behavior of objects or substances adherent to the interior of the channel. To demonstrate the technique, we exposed live fibroblast cells to ionomycin, a membrane-permeable calcium ionophore, while assaying cytosolic calcium concentration. Through the manipulation of the laminar flow interface, we exposed the cells' endogenous calcium handling machinery to spatially-contained discrete and oscillatory intracellular disturbances, which were observed to elicit a regulatory response. The spatiotemporal precision of the generated signals opens avenues to previously unapproachable areas for potential investigation of cell signaling and material behavior
    corecore