20 research outputs found

    Temporal Evolution of Risk Behavior in a Disease Spread Simulation

    Full text link
    Human behavior is a dynamic process that evolves with experience. Understanding the evolution of individual's risk propensity is critical to design public health interventions to propitiate the adoption of better biosecurity protocols and thus, prevent the transmission of an infectious disease. Using an experimental game that simulates the spread of a disease in a network of porcine farms, we measure how learning from experience affects the risk aversion of over 10001000 players. We used a fully automated approach to segment the players into 4 categories based on the temporal trends of their game plays and compare the outcomes of their overall game performance. We found that the risk tolerant group is 50%50\% more likely to incur an infection than the risk averse one. We also find that while all individuals decrease the amount of time it takes to make decisions as they become more experienced at the game, we find a group of players with constant decision strategies who rapidly decrease their time to make a decision and a second context-aware decision group that contemplates longer before decisions while presumably performing a real-time risk assessment. The behavioral strategies employed by players in this simulated setting could be used in the future as an early warning signal to identify undesirable biosecurity-related risk aversion preferences, or changes in behavior, which may allow for targeted interventions to help mitigate them.Comment: 12 pages, 1 table, 7 figure

    Home on the Range: Factors Explaining Partial Migration of African Buffalo in a Tropical Environment

    Get PDF
    Partial migration (when only some individuals in a population undertake seasonal migrations) is common in many species and geographical contexts. Despite the development of modern statistical methods for analyzing partial migration, there have been no studies on what influences partial migration in tropical environments. We present research on factors affecting partial migration in African buffalo (Syncerus caffer) in northeastern Namibia. Our dataset is derived from 32 satellite tracking collars, spans 4 years and contains over 35,000 locations. We used remotely sensed data to quantify various factors that buffalo experience in the dry season when making decisions on whether and how far to migrate, including potential man-made and natural barriers, as well as spatial and temporal heterogeneity in environmental conditions. Using an information-theoretic, non-linear regression approach, our analyses showed that buffalo in this area can be divided into 4 migratory classes: migrants, non-migrants, dispersers, and a new class that we call “expanders”. Multimodel inference from least-squares regressions of wet season movements showed that environmental conditions (rainfall, fires, woodland cover, vegetation biomass), distance to the nearest barrier (river, fence, cultivated area) and social factors (age, size of herd at capture) were all important in explaining variation in migratory behaviour. The relative contributions of these variables to partial migration have not previously been assessed for ungulates in the tropics. Understanding the factors driving migratory decisions of wildlife will lead to better-informed conservation and land-use decisions in this area

    Long-Term Vegetation Change in Central Africa: The Need for an Integrated Management Framework for Forests and Savannas

    Full text link
    peer reviewedTropical forests and savannas are the main biomes in sub-Saharan Africa, covering most of the continent. Collectively they offer important habitat for biodiversity and provide multiple ecosystem services. Considering their global importance and the multiple sustainability challenges they face in the era of the Anthropocene, this chapter undertakes a comprehensive analysis of the past, present, and future vegetation patterns in central African forests and savannas. Past changes in climate, vegetation, land use, and human activity have affected the distribution of forests and savannas across central Africa. Currently, forests form a continuous block across the wet and moist areas of central Africa, and are characterized by high tree cover (>90% tree cover). Savannas and woodlands have lower tree cover (<40% tree cover), are found in drier sites in the north and south of the region, and are maintained by frequent fires. Recent tree cover loss (2000–2015) has been more important for forests than for savannas, which, however, reportedly experienced woody encroachment. Future cropland expansion is expected to have a strong impact on savannas, while the extent of climatic impacts depends on the actual scenario. We finally identify some of the policy implications for restoring ecosystems, expanding protected areas, and designing sustainable ecosystem management approaches in the region

    The comparative role of key environmental factors in determining savanna productivity and carbon fluxes: a review, with special reference to northern Australia

    Get PDF
    Terrestrial ecosystems are highly responsive to their local environments and, as such, the rate of carbon uptake both in shorter and longer timescales and different spatial scales depends on local environmental drivers. For savannas, the key environmental drivers controlling vegetation productivity are water and nutrient availability, vapour pressure deficit (VPD), solar radiation and fire. Changes in these environmental factors can modify the carbon balance of these ecosystems. Therefore, understanding the environmental drivers responsible for the patterns (temporal and spatial) and processes (photosynthesis and respiration) has become a central goal in terrestrial carbon cycle studies. Here we have reviewed the various environmental controls on the spatial and temporal patterns on savanna carbon fluxes in northern Australia. Such studies are critical in predicting the impacts of future climate change on savanna productivity and carbon storage

    Why we need to account for human behavior and decision-making to effectively model the non-linear dynamics of livestock disease

    No full text
    Animal disease costs the livestock industries billions of dollars annually. These costs can be reduced using effective biosecurity. However, costs of biosecurity are steep and benefits must be weighed against the uncertain infection risks. Much effort has gone into determining efficacy of different biosecurity tactics and strategies. Unfortunately, the variability in human behavior and decision-making when confronted with risk information has largely been overlooked. Here we show that use of the human behavioral component is necessary to understand the patterns of infection incidence in livestock industries. Using an agent-based model developed with a foundation of supply chain and industry structural data, we integrate human behavioral data generated using experimental games that parameterizes communication strategies, learning, psychological discounting and categorization of human behavior along a risk aversion spectrum. The influence of risk communication strategies on human behavior can be tested with experimental gaming simulations and their impact on the system can be projected using agent-based models, delivering feedback to increase disease resiliency of production systems
    corecore