79 research outputs found

    Electroanatomical voltage mapping with contact force sensing for diagnosis of arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Background Three-dimensional electroanatomical mapping (EAM) can be helpful to diagnose arrhythmogenic right ventricular cardiomyopathy (ARVC). Yet, previous studies utilizing EAM have not systematically used contact-force sensing catheters (CFSC) to characterize the substrate in ARVC, which is the current gold standard to assure adequate tissue contact. Objective To investigate reference values for endocardial right ventricular (RV) EAM as well as substrate characterization in patients with ARVC by using CFSC. Methods Endocardial RV EAM during sinus rhythm was performed with CFSC in 12 patients with definite ARVC and 5 matched controls without structural heart disease. A subanalysis for the RV outflow tract (RVOT), septum, free-wall, subtricuspid region, and apex was performed. Endocardial bipolar and unipolar voltage amplitudes (BVA, UVA), signal characteristics and duration as well as the impact of catheter orientation on endocardial signals were also investigated. Results ARVC patients showed lower BVA vs. controls (p = 0.018), particularly in the subtricuspid region (1.4, IQR:0.5–3.1 vs. 3.8, IQR:2.5-5 mV, p = 0.037) and RV apex (2.5, IQR:1.5–4 vs. 4.3,IQR:2.9–6.1 mV, p = 0.019). BVA in all RV regions yielded a high sensitivity and specificity for ARVC diagnosis (AUC 59–78%, p < 0.05 for all), with the highest performance for the subtricuspid region (AUC 78%, 95% CI:0.75–0.81, p < 0.001, negative predictive value 100%). A positive correlation between BVA and an orthogonal catheter orientation (46Β°-90Β°:r = 0.106, p < 0.001), and a negative correlation between BVA and EGM duration (r = βˆ’0.370, p < 0.001) was found. Conclusions EAM using CFSC validates previous bipolar cut-off values for normal endocardial RV voltage amplitudes. RV voltages are generally lower in ARVC as compared to controls, with the subtricuspid area being commonly affected and having the highest discriminatory power to differentiate between ARVC and healthy controls. Therefore, EAM using CFSC constitutes a promising tool for diagnosis of ARVC

    Prognostic Impacts of Angiopoietins in NSCLC Tumor Cells and Stroma: VEGF-A Impact Is Strongly Associated with Ang-2

    Get PDF
    INTRODUCTION: Angiopoietins and their receptor Tie-2 are, in concert with VEGF-A, key mediators in angiogenesis. This study evaluates the prognostic impact of all known human angiopoietins (Ang-1, Ang-2 and Ang-4) and their receptor Tie-2, as well as their relation to the prognostic expression of VEGF-A. METHODS: 335 unselected stage I-IIIA NSCLC-patients were included and tissue samples of respective tumor cells and stroma were collected in tissue microarrays (TMAs). Immunohistochemistry (IHC) was used to semiquantitatively evaluate the expression of markers in duplicate tumor and stroma cores. PRINCIPAL FINDINGS: In univariate analyses, low tumor cell expression of Ang-4 (Pβ€Š=β€Š0.046) and low stromal expressions of Ang-4 (Pβ€Š=β€Š0.009) and Ang-2 (Pβ€Š=β€Š0.017) were individually associated with a poor survival. In the multivariate analysis, low stromal Ang-2 (HR 1.88; CI 95% 1.15-3.08) and Ang-4 (HR 1.47, CI 95% 1.02-2.11, Pβ€Š=β€Š0.04) expressions were independently associated with a poor prognosis. In patients with high tumor cell expression of Ang-2, a concomitantly high tumor VEGF-A expression mediated a dramatic survival reduction (P<0.001). In the multivariate analysis of patients with high Ang-2 expression, high tumor VEGF-A expression appeared an independent poor prognosticator (HR 6.43; CI 95% 2.46-16.8; P<0.001). CONCLUSIONS: In tumor cells, only Ang-4 expression has prognostic impact in NSCLC. In tumor stroma, Ang-4 and Ang-2 are independently associated with survival. The prognostic impact of tumor cell VEGF-A in NSCLC appears strongly associated with a concomitantly high tumor cell expression of Ang-2

    Electrotonic Signals along Intracellular Membranes May Interconnect Dendritic Spines and Nucleus

    Get PDF
    Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER) is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron

    Building capital through bioregional planning and biosphere reserves

    No full text

    Junger Patient mit Β«hartnΓ€ckigerΒ» regelmΓ€ssiger Tachykardie

    Full text link

    CRITICAL REVIEW OF THE TAXONOMIC STATUS OF MEDITERRANEAN PHYLLIDIA OPISTHOBRANCHIA NUDIBRANCHIA DORIDOIDEA

    No full text
    Volume: 24Start Page: 205End Page: 21
    • …
    corecore