492 research outputs found
Carbon Monoxide Intensity Mapping at Moderate Redshifts
We present a study of the feasibility of an intensity-mapping survey
targeting the 115 GHz CO(1-0) rotational transition at . We consider
four possible models and estimate the spatial and angular power spectra of CO
fluctuations predicted by each of them. The frequency bandwidths of most
proposed CO intensity mapping spectrographs are too small to use the Limber
approximation to calculate the angular power spectrum, so we present an
alternative method for calculating the angular power spectrum. The models we
consider span two orders of magnitude in signal amplitude, so there is a
significant amount of uncertainty in the theoretical predictions of this
signal. We then consider a parameterized set of hypothetical spectrographs
designed to measure this power spectrum and predict the signal-to-noise ratios
expected under these models. With the spectrographs we consider we find that
three of the four models give an SNR greater than 10 within one year of
observation. We also study the effects on SNR of varying the parameters of the
survey in order to demonstrate the importance of carefully considering survey
parameters when planning such an experiment.Comment: 7 pages, 8 fgures, published in MNRA
Recommendation of RILEM TC 212-ACD: acousticemission and related NDE techniques for crack detectionand damage evaluation in concrete. Measurement method for acoustic emission signals in concrete
The text presented hereafter is a draft for general consideration
Design of the Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) AIR Study.
IntroductionPopulation-based epidemiological evidence suggests that exposure to ambient air pollutants increases hospitalisations and mortality from chronic obstructive pulmonary disease (COPD), but less is known about the impact of exposure to air pollutants on patient-reported outcomes, morbidity and progression of COPD.Methods and analysisThe Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) Air Pollution Study (SPIROMICS AIR) was initiated in 2013 to investigate the relation between individual-level estimates of short-term and long-term air pollution exposures, day-to-day symptom variability and disease progression in individuals with COPD. SPIROMICS AIR builds on a multicentre study of smokers with COPD, supplementing it with state-of-the-art air pollution exposure assessments of fine particulate matter, oxides of nitrogen, ozone, sulfur dioxide and black carbon. In the parent study, approximately 3000 smokers with and without airflow obstruction are being followed for up to 3 years for the identification of intermediate biomarkers which predict disease progression. Subcohorts undergo daily symptom monitoring using comprehensive daily diaries. The air monitoring and modelling methods employed in SPIROMICS AIR will provide estimates of individual exposure that incorporate residence-specific infiltration characteristics and participant-specific time-activity patterns. The overarching study aim is to understand the health effects of short-term and long-term exposures to air pollution on COPD morbidity, including exacerbation risk, patient-reported outcomes and disease progression.Ethics and disseminationThe institutional review boards of all the participating institutions approved the study protocols. The results of the trial will be presented at national and international meetings and published in peer-reviewed journals
Evaluation of concrete structures by combining non-destructive testing methods (SENSO project)
The management and maintenance of the built heritage is one of the main interests of the owners of concrete structures. The engineers wish to obtain quantitative information about concrete properties and their variability. Non-destructive testing (NDT) is very popular in this context as it quickly provides relevant information on the integrity and evolution of the material, but several kinds of indicators representative of the concrete condition need to be evaluated. A French Project, named SENSO, aims to develop methods for the non-destructive evaluation of concrete based on a multi-techniques approach. Several families of techniques are concerned (ultrasonic, electromagnetic, electrical, etc.). The main objective is to define the sensitivity of the techniques and the variability of the evaluation for each indicator concerned. To achieve this, a large experimental programme, involving a representative range of concretes and several indicators, has been carried out. A large database, linking the NDT observables and the indicators, allows the different observables to be distinguished in terms of quality (linked to the variability) and in terms of relevance for the characterisation of each indicator. The improvement of the indicator evaluation by means of technique combinatio
Recommendation of RILEM TC 212-ACD: acousticemission and related NDE techniques for crack detectionand damage evaluation in concrete.Test method for damage qualification of reinforced concrete beams by acousticemission
The text presented hereafter is a draft for general consideration
CCAT-prime: Science with an Ultra-widefield Submillimeter Observatory at Cerro Chajnantor
We present the detailed science case, and brief descriptions of the telescope
design, site, and first light instrument plans for a new ultra-wide field
submillimeter observatory, CCAT-prime, that we are constructing at a 5600 m
elevation site on Cerro Chajnantor in northern Chile. Our science goals are to
study star and galaxy formation from the epoch of reionization to the present,
investigate the growth of structure in the Universe, improve the precision of
B-mode CMB measurements, and investigate the interstellar medium and star
formation in the Galaxy and nearby galaxies through spectroscopic,
polarimetric, and broadband surveys at wavelengths from 200 um to 2 mm. These
goals are realized with our two first light instruments, a large field-of-view
(FoV) bolometer-based imager called Prime-Cam (that has both camera and an
imaging spectrometer modules), and a multi-beam submillimeter heterodyne
spectrometer, CHAI. CCAT-prime will have very high surface accuracy and very
low system emissivity, so that combined with its wide FoV at the unsurpassed
CCAT site our telescope/instrumentation combination is ideally suited to pursue
this science. The CCAT-prime telescope is being designed and built by Vertex
Antennentechnik GmbH. We expect to achieve first light in the spring of 2021.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy IX, June 14th, 201
- …
