1,327 research outputs found

    Scaling state of dry two-dimensional froths: universal angle deviations and structure

    Full text link
    We characterize the late-time scaling state of dry, coarsening, two-dimensional froths using a detailed, force-based vertex model. We find that the slow evolution of bubbles leads to systematic deviations from 120degree angles at three-fold vertices in the froth, with an amplitude proportional to the vertex speed, v ~ sqrt(t), but with a side-number dependence that is independent of time. We also find that a significant number of T1 side-switching processes occur for macroscopic bubbles in the scaling state, though most bubble annihilations involve four-sided bubbles at microscopic scales.Comment: 7 pages, 7 figure

    Dramatically increased rate of observed hot record breaking in recent Australian temperatures

    Get PDF
    Persistent extreme temperatures were observed in Australia during 2012–2014. We examine changes in the rate of hot and cold record breaking over the observational record for Australia- and State-wide temperatures. The number of new hot (high-maximum and high-minimum temperatures) temperature records increases dramatically in recent decades, while the number of cold records decreases. In a stationary climate, cold and hot records are expected to occur in equal frequency on longer than interannual time scales; however, during 2000–2014, new hot records outnumber new cold records by 12 to one on average. Coupled Model Intercomparison Project phase 5 experiments reveal increased hot temperature record breaking occurs in simulations that impose anthropogenic forcings but not in natural forcings-only experiments. This disproportionate hot to cold record breaking rates provides a useful indicator of nonstationarity in temperatures, which is related to the underlying mean observed Australian warming trend of 0.9°C since high-quality records began in 1910

    Short-term effects of deep ploughing on soil C stocks following renewal of a dairy pasture in New Zealand

    Get PDF
    In New Zealand’s high producing permanent pastures the topsoil constitutes a large reservoir of soil organic carbon (SOC), which shows a marked stratification with depth. As consequence, sub-surface layers can contain 10 times less carbon than the surface soil. In permanent pastures with high carbon inputs, the formation and decomposition of these surface SOC stocks are often at equilibrium and C storage shows little change over time. Pastoral based dairy systems utilising ryegrass plus clover cultivars require renewal every 7-10 years to avoid reversion to less productive grasses. This may involve spring cultivation (either no-till, shallow till or full cultivation), summer forage cropping and autumn re-grassing. It has been hypothesised that SOC stocks can be increased by inverting the soil profile at pasture renewal through infrequent (once in 25-30 years) deep mouldboard ploughing (up to 30 cm depth). Increased C sequestration occurs when the new grass quickly rebuilds SOC stocks in the new topsoil (exposed low C sub-soil) at a rate faster than the decomposition of SOC in the rich former topsoil transferred to depth (now below 15 cm). However, benefits form accelerated C storage may be offset if crop and pasture production is adversely affected by the ploughing event (e.g., as result of compaction or excessive drainage). Hence, the aim of this work was to assess the short-term effects of infrequent inversion tillage of long-term New Zealand pastoral-based dairy soils under summer crop management and autumn re-grassing. An imperfectly drained Typic Fragiaqualf under dairy grazing was deep ploughed (approx. 25 cm) and re-sown with turnip in October 2016; other treatments included were shallow (< 10 cm) cultivation and no-till. The site was core sampled (0-40 cm) before cultivation and after 5 months of turnip growth to assess changes in SOC. Plant growth, herbage quality, and nutrient leaching were monitored during the 5-month period; root growth was assessed at the end of the crop rotation. Full cultivation transferred SOC below 10 cm depth, as expected. Soil bulk density decreased whereas root mass increased (10-20 cm depth; P < 0.05) under deep cultivation only. Besides, losses of mineral N were attenuated under deep tillage, resulting in a relative increase in crop yield. The potential for infrequent inversion tillage increasing soil C sequestration as a greenhouse gas (GHG) mitigation tool is currently being tested at other sites in New Zealand

    Pockets of open cells and drizzle in marine stratocumulus

    Get PDF

    Increased simulated risk of the hot Australian summer of 2012/13 due to anthropogenic activity as measured by heat wave frequency and intensity

    Get PDF
    The Australian summer of 2012/13 was the warmest since records began in 1910 (Bureau of Meteorology 2013a). The season was characterized by the hottest month on record (January), where the continental mean temperature reached 36.9°C. Averaged nationally, the last four months of 2012 were 1.61°C higher than the long-term mean. Rainfall was below average for much of the country since July 2012. Along with the late onset of the Australian monsoon, such conditions primed the continent for extremely hot summer weather, including heat waves. Heat waves require detailed focus due to their large impacts (Karoly 2009; Coumou and Rahmstorf 2012), particularly on human health and morbidity (Nitschke et al. 2007). Much of inland Australia experienced extreme temperatures for over three consecutive weeks (Bureau of Meteorology 2013a)

    Aquaplanets, climate sensitivity, and low clouds

    No full text
    Cloud effects have repeatedly been pointed out as the leading source of uncertainty in projections of future climate, yet clouds remain poorly understood and simulated in climate models. Aquaplanets provide a simplified framework for comparing and understanding cloud effects, and how they are partitioned as a function of regime, in large-scale models. This work uses two climate models to demonstrate that aquaplanets can successfully predict a climate model’s sensitivity to an idealized climate change. For both models, aquaplanet climate sensitivity is similar to that of the realistic configuration. Tropical low clouds appear to play a leading role in determining the sensitivity. Regions of large-scale subsidence, which cover much of the tropics, are most directly responsible for the differences between the models. Although cloud effects and climate sensitivity are similar for aquaplanets and realistic configurations, the aquaplanets lack persistent stratocumulus in the tropical atmosphere. This, and an additional analysis of the cloud response in the realistically configured simulations, suggests the representation of shallow (trade wind) cumulus convection, which is ubiquitous in the tropics, is largely responsible for differences in the simulated climate sensitivity of these two models

    The EU and Asia within an evolving global order: what is Europe? Where is Asia?

    Get PDF
    The papers in this special edition are a very small selection from those presented at the EU-NESCA (Network of European Studies Centres in Asia) conference on "the EU and East Asia within an Evolving Global Order: Ideas, Actors and Processes" in November 2008 in Brussels. The conference was the culmination of three years of research activity involving workshops and conferences bringing together scholars from both regions primarily to discuss relations between Europe and Asia, perceptions of Europe in Asia, and the relationship between the European regional project and emerging regional forms in Asia. But although this was the last of the three major conferences organised by the consortium, it in many ways represented a starting point rather than the end; an opportunity to reflect on the conclusions of the first phase of collaboration and point towards new and continuing research agendas for the future

    The star-forming content of the W3 giant molecular cloud

    Full text link
    We have surveyed a ~0.9-square-degree area of the W3 giant molecular cloud and star-forming region in the 850-micron continuum, using the SCUBA bolometer array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps was detected with a mass range from around 13 to 2500 Msun. Part of the W3 GMC is subject to an interaction with the HII region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-micron traced structures is significantly altered by this interaction, being around 5% to 13% in the undisturbed cloud but ~25 - 37% in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.Comment: 13 pages, 8 figures, 1 table (full source table available on request). Accepted for publication in Monthly Notices of the Royal Astronomical Society (Main Journal
    • …
    corecore