525 research outputs found

    New limits on a cosmological constant from statistics of gravitational lensing

    Get PDF
    We present new limits on cosmological parameters from the statistics of gravitational lensing, based on the recently revised knowledge of the luminosity function and internal dynamics of E/S0 galaxies that are essential in lensing high-redshift QSOs. We find that the lens models using updated Schechter parameters for such galaxies, derived from the recent redshift surveys combined with morphological classification, are found to give smaller lensing probabilities than earlier calculated. Inconsistent adoption of these parameters from a mixture of various galaxy surveys gives rise to systematic biases in the results. We also show that less compact dwarf-type galaxies which largely dominate the faint part of the Schechter-form luminosity function contribute little to lensing probabilities, so that earlier lens models overestimate incidents of small separation lenses. Applications of the lens models to the existing lens surveys indicate that reproduction of both the lensing probability of optical sources and the image separations of optical and radio lenses is significantly improved in the revised lens models. The likelihood analyses allow us to conclude that a flat universe with Omega=0.3(+0.2-0.1) and Omega+Lambda=1 is most preferable, and a matter-dominated flat universe with Lambda=0 is ruled out at 98 % confidence level. These new limits are unaffected by inclusion of uncertainties in the lens properties.Comment: 30 pages, 9 ps figures, AASTeX, ApJ in pres

    Shear and Ellipticity in Gravitational Lenses

    Full text link
    Galaxies modeled as singular isothermal ellipsoids with an axis ratio distribution similar to the observed axis ratio distribution of E and S0 galaxies are statistically consistent with both the observed numbers of two-image and four-image lenses and the inferred ellipticities of individual lenses. However, no four-image lens is well fit by the model (typical χ2/Ndof20\chi^2/N_{dof} \sim 20), the axis ratio of the model can be significantly different from that of the observed lens galaxy, and the major axes of the model and the galaxy may be slightly misaligned. We found that models with a second, independent, external shear axis could fit the data well (typical χ2/Ndof1\chi^2/N_{dof} \sim 1), while adding the same number of extra parameters to the radial mass distribution does not produce such a dramatic improvement in the fit. An independent shear axis can be produced by misalignments between the luminous galaxy and its dark matter halo, or by external shear perturbations due to galaxies and clusters correlated with the primary lens or along the line of sight. We estimate that the external shear perturbations have no significant effect on the expected numbers of two-image and four-image lenses, but that they can be important perturbations in individual lens models. However, the amplitudes of the external shears required to produce the good fits are larger than our estimates for typical external shear perturbations (10-15% shear instead of 1-3% shear) suggesting that the origin of the extra angular structure must be intrinsic to the primary lens galaxy in most cases.Comment: 38 pages, 9 figures, submitted to Ap

    Sagopilone (ZK-EPO, ZK 219477) for recurrent glioblastoma. A phase II multicenter trial by the European Organisation for Research and Treatment of Cancer (EORTC) Brain Tumor Group

    Get PDF
    Background: Sagopilone (ZK 219477), a lipophylic and synthetic analog of epothilone B, that crosses the blood-brain barrier has demonstrated preclinical activity in glioma models. Patients and methods: Patients with first recurrence/progression of glioblastoma were eligible for this early phase II and pharmacokinetic study exploring single-agent sagopilone (16 mg/m2 over 3 h every 21 days). Primary end point was a composite of either tumor response or being alive and progression free at 6 months. Overall survival, toxicity and safety and pharmacokinetics were secondary end points. Results: Thirty-eight (evaluable 37) patients were included. Treatment was well tolerated, and neuropathy occurred in 46% patients [mild (grade 1) : 32%]. No objective responses were seen. The progression-free survival (PFS) rate at 6 months was 6.7% [95% confidence interval (CI) 1.3-18.7], the median PFS was just over 6 weeks, and the median overall survival was 7.6 months (95% CI 5.3-12.3), with a 1-year survival rate of 31.6% (95% CI 17.7-46.4). Maximum plasma concentrations were reached at the end of the 3-h infusion, with rapid declines within 30 min after termination. Conclusions: No evidence of relevant clinical antitumor activity against recurrent glioblastoma could be detected. Sagopilone was well tolerated, and moderate-to-severe peripheral neuropathy was observed in despite prolonged administratio

    A Systems Approach for Tumor Pharmacokinetics

    Get PDF
    Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.National Institutes of Health (U.S.) (grant T32 CA079443

    Differential transcriptional invasion signatures from patient derived organoid models define a functional prognostic tool for head and neck cancer

    Get PDF
    Clinical outcome for patients suffering from HPV-negative head and neck squamous cell carcinoma (HNSCC) remains poor. This is mostly due to highly invasive tumors that cause loco-regional relapses after initial therapeutic intervention and metastatic outgrowth. The molecular pathways governing the detrimental invasive growth modes in HNSCC remain however understudied. Here, we have established HNSCC patient derived organoid (PDO) models that recapitulate 3-dimensional invasion in vitro. Single cell mRNA sequencing was applied to study the differences between non-invasive and invasive conditions, and in a collective versus single cell invading PDO model. Differential expression analysis under invasive conditions in Collagen gels reveals an overall upregulation of a YAP-centered transcriptional program, irrespective of the invasion mode. However, we find that collectively invading HNSCC PDO cells show elevated levels of YAP transcription targets when compared to single cell invasion. Also, collectively invading cells are characterized by increased nuclear translocation of YAP within the invasive strands, which coincides with Collagen-I matrix alignment at the invasive front. Using gene set enrichment analysis, we identify immune cell-like migratory pathways in the single cell invading HNSCC PDO, while collective invasion is characterized by overt upregulation of adhesion and migratory pathways. Lastly, based on clinical head and neck cancer cohorts, we demonstrate that the identified collective invasion signature provides a candidate prognostic platform for survival in HNSCC. By uncoupling collective and single cell invasive programs, we have established invasion signatures that may guide new therapeutic options.</p

    Determining the Hubble Constant from the Gravitational Lens PG 1115+080

    Get PDF
    For the quadruple gravitational lens PG 1115+080, we combine recent measurements of the time delays with new lens models to determine the Hubble constant H_0. We explore the effects of systematic uncertainties in the lens models on the estimates of H_0, and we discuss how the uncertainties can be reduced by future observations. We find that the lens cannot be fit by an isolated lens galaxy, but that it can be well fit by including a perturbation from the nearby group of galaxies. To understand the full range of systematic uncertainties it is crucial to use an ellipsoidal galaxy and to let the group position vary. In this case, the existing constraints cannot break degeneracies in the models with respect to the profiles of the galaxy and group and to the position of the group. Combining the known time delays with a range of lens models incorporating most of the plausible systematic effects yields H_0 = 51_{-13}^{+14} km s^{-1} Mpc^{-1}. The constraints on the lens models, and hence on H_0, can be improved by reducing the standard errors in the lens galaxy position from 50 mas to \sim10 mas, reducing the uncertainties in the time delays to \sim0.5 days, and constraining the lens mass distribution using HST photometry and the fundamental plane. In particular, the time delay ratio r_{ABC} = \Delta\tau_{AC} / \Delta\tau_{BA} may provide the best constraint on the mass profile of the galaxy.Comment: revised to use the updated time delays of Bar-Kana astro-ph/9701068; 30 pages, 7 Postscript figures, to appear in Ap

    Recurrent <i>MDM2 </i>Amplification in the Spectrum of <i>HMGA2</i>-Altered Pleomorphic Adenoma, Atypical Pleomorphic Adenoma and Carcinoma Ex Pleomorphic Adenoma

    Get PDF
    Introduction: Pleomorphic adenoma is the most common neoplasm of the salivary glands. While the overall risk of malignancy is relatively low, a distinct molecular sub-group harboring HMGA2 alterations seems to show an increased risk of malignant progression to carcinoma ex pleomorphic adenoma. Purpose: This study investigates MDM2 amplification in HMGA2-altered pleomorphic adenoma, atypical pleomorphic adenoma, and carcinoma ex pleomorphic adenoma. Methods: In this multicenter, retrospective case series analysis, we examined 37 cases of HMGA2-altered pleomorphic adenoma, carcinoma ex pleomorphic adenoma, and pleomorphic adenoma with atypical features. A total of 18 cases were included from our institutional archives, with 19 additional cases derived from published literature. The cases from our institutes were analyzed for MDM2 amplification using a stepped approach by immunohistochemistry and FISH. Results: Collectively, an MDM2 amplification was present in 27% of pleomorphic adenoma (4 of 15), compared to 78% of carcinoma ex pleomorphic adenoma (14 of 18) (p-value = 0.003). In the group of pleomorphic adenomas with atypical features, an MDM2 amplification was present in 50% of cases (2 of 4). These findings indicate an association between MDM2 amplification and malignancy. Strikingly, a mixed control group of 12 benign and malignant PLAG1-altered neoplasms showed no immunohistochemical staining for MDM2. Conclusion: Immunohistochemical MDM2 expression, including MDM2 amplification, is enriched in the group of HMGA2-altered pleomorphic adenoma, and potentially plays role in malignant progression. This study highlights the importance of recognizing the molecular sub-group of HMGA2-altered pleomorphic adenomas and integrate MDM2 analysis into routine diagnostics to corroborate the cytonuclear atypia in these challenging cases.</p

    Differential transcriptional invasion signatures from patient derived organoid models define a functional prognostic tool for head and neck cancer

    Get PDF
    Clinical outcome for patients suffering from HPV-negative head and neck squamous cell carcinoma (HNSCC) remains poor. This is mostly due to highly invasive tumors that cause loco-regional relapses after initial therapeutic intervention and metastatic outgrowth. The molecular pathways governing the detrimental invasive growth modes in HNSCC remain however understudied. Here, we have established HNSCC patient derived organoid (PDO) models that recapitulate 3-dimensional invasion in vitro. Single cell mRNA sequencing was applied to study the differences between non-invasive and invasive conditions, and in a collective versus single cell invading PDO model. Differential expression analysis under invasive conditions in Collagen gels reveals an overall upregulation of a YAP-centered transcriptional program, irrespective of the invasion mode. However, we find that collectively invading HNSCC PDO cells show elevated levels of YAP transcription targets when compared to single cell invasion. Also, collectively invading cells are characterized by increased nuclear translocation of YAP within the invasive strands, which coincides with Collagen-I matrix alignment at the invasive front. Using gene set enrichment analysis, we identify immune cell-like migratory pathways in the single cell invading HNSCC PDO, while collective invasion is characterized by overt upregulation of adhesion and migratory pathways. Lastly, based on clinical head and neck cancer cohorts, we demonstrate that the identified collective invasion signature provides a candidate prognostic platform for survival in HNSCC. By uncoupling collective and single cell invasive programs, we have established invasion signatures that may guide new therapeutic options

    Relationship of serum bilirubin concentration to kidney function and 24-hour urine protein in Korean adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationships among serum bilirubin concentration, kidney function and proteinuria have yet to be fully elucidated, nor have these relationships been investigated in Korean adults.</p> <p>Method</p> <p>We retrospectively reviewed the medical records of Korean adults who were evaluated at Kosin University Gospel Hospital (Busan, Republic of Korea) during a five-year period from January 2005 to December 2009. We evaluated the relationships among serum bilirubin concentration, estimated glomerular filtration rate (eGFR) and 24-hour urinary protein excretion in a sample of 1363 Korean adults aged 18 years or older.</p> <p>Results</p> <p>The values of eGFR <60 mL/min/1.73 m<sup>2 </sup>and 24-hour urine albumin ≥150 mg/day were observed in 26.1% (n = 356) and 40.5% (n = 553) of subjects, respectively. Fasting glucose levels ≥126 mg/dL were observed in 44.9% (n = 612) of the total sample. After adjustment for potential confounding factors including demographic characteristics, comorbidities and other laboratory measures, total serum bilirubin was positively associated with eGFR and negatively associated with proteinuria both in the whole cohort and in a subgroup of diabetic individuals.</p> <p>Conclusions</p> <p>To our knowledge, this is the first hospital-based study specifically aimed at examining the relationships among serum total bilirubin concentration, 24-hour urine protein and kidney function in Korean adults. We demonstrated that serum total bilirubin concentration was negatively correlated with 24-hour urine protein and positively correlated with eGFR in Korean non-diabetic and diabetic adults.</p
    corecore