1,123 research outputs found
Comparison of threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in glaucoma. Part II: patterns of visual field loss and acceptability
Electroexcitation of the P33(1232), P11(1440), D13(1520), S11(1535) at Q^2=0.4 and 0.65(GeV/c)^2
Using two approaches: dispersion relations and isobar model, we have analyzed
recent high precision CLAS data on cross sections of \pi^0, \pi^+, and \eta
electroproduction on protons, and the longitudinally polarized electron beam
asymmetry for p(\vec{e},e'p)\pi^0 and p(\vec{e},e'n)\pi^+. The contributions of
the resonances P33(1232), P11(1440), D13(1520), S11(1535) to \pi
electroproduction and S11(1535) to \eta electroproduction are found. The
results obtained in the two approaches are in good agreement with each other.
There is also good agreement between amplitudes of the \gamma^* N \to S11(1535)
transition found in \pi and \eta electroproduction. For the first time accurate
results are obtained for the longitudinal amplitudes of the P11(1440),
D13(1520) and S11(1535) electroexcitation on protons.Comment: 9 pages, 9 figure
Comparison of saccadic vector optokinetic perimetry and standard automated perimetry in glaucoma. Part I: threshold values and repeatability
Bulk Mediated Surface Diffusion: Non Markovian Desorption with Finite First Moment
Here we address a fundamental issue in surface physics: the dynamics of
adsorbed molecules. We study this problem when the particle's desorption is
characterized by a non Markovian process, while the particle's adsorption and
its motion in the bulk are governed by a Markovian dynamics. We study the
diffusion of particles in a semi-infinite cubic lattice, and focus on the
effective diffusion process at the interface . We calculate analytically
the conditional probability to find the particle on the plane as well as
the surface dispersion as functions of time. The comparison of these results
with Monte Carlo simulations show an excellent agreement.Comment: 16 pages, 7 figs. European Physical Journal B (in press
Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order
We calculate the imaginary parts of the isoscalar scalar and isovector
electromagnetic form factors of the nucleon up to two-loop order in chiral
perturbation theory. Particular attention is paid on the correct behavior of Im
and Im at the two-pion threshold
in connection with the non-relativistic 1/M-expansion. We recover the
well-known strong enhancement near threshold originating from the nearby
anomalous singularity at . In the
case of the scalar spectral function Im one finds a significant
improvement in comparison to the lowest order one-loop result. Higher order
-rescattering effects are however still necessary to close a remaining
20%-gap to the empirical scalar spectral function. The isovector electric and
magnetic spectral functions Im get additionally enhanced near
threshold by the two-pion-loop contributions. After supplementing their
two-loop results by a phenomenological -meson exchange term one can
reproduce the empirical isovector electric and magnetic spectral functions
fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review
A precise extraction of the induced polarization in the 4He(e,e'p)3H reaction
We measured with unprecedented precision the induced polarization Py in
4He(e,e'p)3H at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2. The induced polarization
is indicative of reaction-mechanism effects beyond the impulse approximation.
Our results are in agreement with a relativistic distorted-wave impulse
approximation calculation but are over-estimated by a calculation with strong
charge-exchange effects. Our data are used to constrain the strength of the
spin independent charge-exchange term in the latter calculation.Comment: submitted to Physical Review Letter
Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor
The charged pion form factor, Fpi(Q^2), is an important quantity which can be
used to advance our knowledge of hadronic structure. However, the extraction of
Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is
inherently model dependent. Therefore, a detailed description of the extraction
of the charged pion form factor from electroproduction data obtained recently
at Jefferson Lab is presented, with particular focus given to the dominant
uncertainties in this procedure. Results for Fpi are presented for
Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically
below the monopole parameterization that describes the low Q^2 data used to
determine the pion charge radius. The pion form factor can be calculated in a
wide variety of theoretical approaches, and the experimental results are
compared to a number of calculations. This comparison is helpful in
understanding the role of soft versus hard contributions to hadronic structure
in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
- …
