706 research outputs found

    Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi level pinning at the molecule-metal interface

    Full text link
    We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices and we examine to what extent the nature of the pi end-group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. For all the pi-groups investigated here, we observe rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (S. Lenfant et al., Nano Letters 3, 741 (2003)).The experimental current-voltage curves are analyzed with a simple analytical model, from which we extract the energy position of the molecular orbital of the pi-group in resonance with the Fermi energy of the electrodes. We report the experimental studies of the band lineup in these silicon/alkyl-pi conjugated molecule/metal junctions. We conclude that Fermi level pinning at the pi-group/metal interface is mainly responsible for the observed absence of dependence of the rectification effect on the nature of the pi-groups, even though they were chosen to have significant variations in their electronic molecular orbitalsComment: To be published in J. Phys. Chem.

    First-principles calculation of intrinsic defect formation volumes in silicon

    Full text link
    We present an extensive first-principles study of the pressure dependence of the formation enthalpies of all the know vacancy and self-interstitial configurations in silicon, in each charge state from -2 through +2. The neutral vacancy is found to have a formation volume that varies markedly with pressure, leading to a remarkably large negative value (-0.68 atomic volumes) for the zero-pressure formation volume of a Frenkel pair (V + I). The interaction of volume and charge was examined, leading to pressure--Fermi level stability diagrams of the defects. Finally, we quantify the anisotropic nature of the lattice relaxation around the neutral defects.Comment: 9 pages, 9 figure

    Electron transport through a metal-molecule-metal junction

    Full text link
    Molecules of bisthiolterthiophene have been adsorbed on the two facing gold electrodes of a mechanically controllable break junction in order to form metal-molecule(s)-metal junctions. Current-voltage (I-V) characteristics have been recorded at room temperature. Zero bias conductances were measured in the 10-100 nS range and different kinds of non-linear I-V curves with step-like features were reproducibly obtained. Switching between different kinds of I-V curves could be induced by varying the distance between the two metallic electrodes. The experimental results are discussed within the framework of tunneling transport models explicitly taking into account the discrete nature of the electronic spectrum of the molecule.Comment: 12 pages, 12 figures to appear in Phys. Rev. B 59(19) 199

    Measurements of the magnetic field induced by a turbulent flow of liquid metal

    Full text link
    Initial results from the Madison Dynamo Experiment provide details of the inductive response of a turbulent flow of liquid sodium to an applied magnetic field. The magnetic field structure is reconstructed from both internal and external measurements. A mean toroidal magnetic field is induced by the flow when an axial field is applied, thereby demonstrating the omega effect. Poloidal magnetic flux is expelled from the fluid by the poloidal flow. Small-scale magnetic field structures are generated by turbulence in the flow. The resulting magnetic power spectrum exhibits a power-law scaling consistent with the equipartition of the magnetic field with a turbulent velocity field. The magnetic power spectrum has an apparent knee at the resistive dissipation scale. Large-scale eddies in the flow cause significant changes to the instantaneous flow profile resulting in intermittent bursts of non-axisymmetric magnetic fields, demonstrating that the transition to a dynamo is not smooth for a turbulent flow.Comment: 9 pages, 11 figures, invited talk by C. B. Forest at 2005 APS DPP meeting, resubmitted to Physics of Plasma

    Scaling Law in Carbon Nanotube Electromechanical Devices

    Full text link
    We report a method for probing electromechanical properties of multiwalled carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly clamped suspended CNT electrostatically deflected by a gate electrode. We measure the maximum deflection as a function of the applied gate voltage. Data from different CNTs scale into an universal curve within the experimental accuracy, in agreement with a continuum model prediction. This method and the general validity of the scaling law constitute a very useful tool for designing actuators and in general conducting nanowire-based NEMS.Comment: 12 pages, 4 figures. To be published in Phys. Rev. Let

    First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy

    Full text link
    Convergence of density-functional supercell calculations for defect formation energies, charge transition levels, localized defect state properties, and defect atomic structure and relaxation is investigated using the arsenic split interstitial in GaAs as an example. Supercells containing up to 217 atoms and a variety of {\bf k}-space sampling schemes are considered. It is shown that a good description of the localized defect state dispersion and charge state transition levels requires at least a 217-atom supercell, although the defect structure and atomic relaxations can be well converged in a 65-atom cell. Formation energies are calculated for the As split interstitial, Ga vacancy, and As antisite defects in GaAs, taking into account the dependence upon chemical potential and Fermi energy. It is found that equilibrium concentrations of As interstitials will be much lower than equilibrium concentrations of As antisites in As-rich, nn-type or semi-insulating GaAs.Comment: 10 pages, 5 figure

    Interfacial charge transfer in nanoscale polymer transistors

    Get PDF
    Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferred in a number of photoemission experiments. We present electronic transport measurements in very short channel (L<100L < 100 nm) transistors made from poly(3-hexylthiophene) (P3HT). As channel length is reduced, the evolution of the contact resistance and the zero-gate-voltage conductance are consistent with such charge transfer. Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts, consistent with charge transfer expectations. Alternating current scanning tunneling microscopy (ACSTM) provides further evidence that holes are transferred from Pt into P3HT, while much less charge transfer takes place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure

    MHD in von Kármán swirling flows, development and first run of the sodium experiment

    Get PDF
    URL: http://www-spht.cea.fr/articles/s01/004 MHD dans les écoulements de von Kármán | Collaboration VKSNATO Science Series II 26, 35-50 (2001). NATO Advanced Research Workshop, Dynamo and Dynamics, A Mathematical ChallengeWe describe the motivations, development and first run of the Von Kármán Sodium (VKS) experiment built to study high Reynolds number magnetohydrodynamics and applications to the dynamo effect. The flow is optimized using water experiments at scale 1/2 and kinematic dynamo simulations. In VKS run1, induction measurements are made in the presence of an externally applied field. Results are reported concerning the geometry of the induced field and its fluctuations in time
    corecore