706 research outputs found
Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi level pinning at the molecule-metal interface
We report the synthesis and characterization of molecular rectifying diodes
on silicon using sequential grafting of self-assembled monolayers of alkyl
chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We
investigate the structure-performance relationships of these molecular devices
and we examine to what extent the nature of the pi end-group (change in the
energy position of their molecular orbitals) drives the properties of these
molecular diodes. For all the pi-groups investigated here, we observe
rectification behavior. These results extend our preliminary work using phenyl
and thiophene groups (S. Lenfant et al., Nano Letters 3, 741 (2003)).The
experimental current-voltage curves are analyzed with a simple analytical
model, from which we extract the energy position of the molecular orbital of
the pi-group in resonance with the Fermi energy of the electrodes. We report
the experimental studies of the band lineup in these silicon/alkyl-pi
conjugated molecule/metal junctions. We conclude that Fermi level pinning at
the pi-group/metal interface is mainly responsible for the observed absence of
dependence of the rectification effect on the nature of the pi-groups, even
though they were chosen to have significant variations in their electronic
molecular orbitalsComment: To be published in J. Phys. Chem.
First-principles calculation of intrinsic defect formation volumes in silicon
We present an extensive first-principles study of the pressure dependence of
the formation enthalpies of all the know vacancy and self-interstitial
configurations in silicon, in each charge state from -2 through +2. The neutral
vacancy is found to have a formation volume that varies markedly with pressure,
leading to a remarkably large negative value (-0.68 atomic volumes) for the
zero-pressure formation volume of a Frenkel pair (V + I). The interaction of
volume and charge was examined, leading to pressure--Fermi level stability
diagrams of the defects. Finally, we quantify the anisotropic nature of the
lattice relaxation around the neutral defects.Comment: 9 pages, 9 figure
Electron transport through a metal-molecule-metal junction
Molecules of bisthiolterthiophene have been adsorbed on the two facing gold
electrodes of a mechanically controllable break junction in order to form
metal-molecule(s)-metal junctions. Current-voltage (I-V) characteristics have
been recorded at room temperature. Zero bias conductances were measured in the
10-100 nS range and different kinds of non-linear I-V curves with step-like
features were reproducibly obtained. Switching between different kinds of I-V
curves could be induced by varying the distance between the two metallic
electrodes. The experimental results are discussed within the framework of
tunneling transport models explicitly taking into account the discrete nature
of the electronic spectrum of the molecule.Comment: 12 pages, 12 figures to appear in Phys. Rev. B 59(19) 199
Measurements of the magnetic field induced by a turbulent flow of liquid metal
Initial results from the Madison Dynamo Experiment provide details of the
inductive response of a turbulent flow of liquid sodium to an applied magnetic
field. The magnetic field structure is reconstructed from both internal and
external measurements. A mean toroidal magnetic field is induced by the flow
when an axial field is applied, thereby demonstrating the omega effect.
Poloidal magnetic flux is expelled from the fluid by the poloidal flow.
Small-scale magnetic field structures are generated by turbulence in the flow.
The resulting magnetic power spectrum exhibits a power-law scaling consistent
with the equipartition of the magnetic field with a turbulent velocity field.
The magnetic power spectrum has an apparent knee at the resistive dissipation
scale. Large-scale eddies in the flow cause significant changes to the
instantaneous flow profile resulting in intermittent bursts of non-axisymmetric
magnetic fields, demonstrating that the transition to a dynamo is not smooth
for a turbulent flow.Comment: 9 pages, 11 figures, invited talk by C. B. Forest at 2005 APS DPP
meeting, resubmitted to Physics of Plasma
Scaling Law in Carbon Nanotube Electromechanical Devices
We report a method for probing electromechanical properties of multiwalled
carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly
clamped suspended CNT electrostatically deflected by a gate electrode. We
measure the maximum deflection as a function of the applied gate voltage. Data
from different CNTs scale into an universal curve within the experimental
accuracy, in agreement with a continuum model prediction. This method and the
general validity of the scaling law constitute a very useful tool for designing
actuators and in general conducting nanowire-based NEMS.Comment: 12 pages, 4 figures. To be published in Phys. Rev. Let
First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy
Convergence of density-functional supercell calculations for defect formation
energies, charge transition levels, localized defect state properties, and
defect atomic structure and relaxation is investigated using the arsenic split
interstitial in GaAs as an example. Supercells containing up to 217 atoms and a
variety of {\bf k}-space sampling schemes are considered. It is shown that a
good description of the localized defect state dispersion and charge state
transition levels requires at least a 217-atom supercell, although the defect
structure and atomic relaxations can be well converged in a 65-atom cell.
Formation energies are calculated for the As split interstitial, Ga vacancy,
and As antisite defects in GaAs, taking into account the dependence upon
chemical potential and Fermi energy. It is found that equilibrium
concentrations of As interstitials will be much lower than equilibrium
concentrations of As antisites in As-rich, -type or semi-insulating GaAs.Comment: 10 pages, 5 figure
Interfacial charge transfer in nanoscale polymer transistors
Interfacial charge transfer plays an essential role in establishing the
relative alignment of the metal Fermi level and the energy bands of organic
semiconductors. While the details remain elusive in many systems, this charge
transfer has been inferred in a number of photoemission experiments. We present
electronic transport measurements in very short channel ( nm)
transistors made from poly(3-hexylthiophene) (P3HT). As channel length is
reduced, the evolution of the contact resistance and the zero-gate-voltage
conductance are consistent with such charge transfer. Short channel conduction
in devices with Pt contacts is greatly enhanced compared to analogous devices
with Au contacts, consistent with charge transfer expectations. Alternating
current scanning tunneling microscopy (ACSTM) provides further evidence that
holes are transferred from Pt into P3HT, while much less charge transfer takes
place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure
Increasing resilience to droughts in Viet Nam: The role of forests, agroforestry, and climate smart agriculture
MHD in von Kármán swirling flows, development and first run of the sodium experiment
URL: http://www-spht.cea.fr/articles/s01/004 MHD dans les écoulements de von Kármán | Collaboration VKSNATO Science Series II 26, 35-50 (2001). NATO Advanced Research Workshop, Dynamo and Dynamics, A Mathematical ChallengeWe describe the motivations, development and first run of the Von Kármán Sodium (VKS) experiment built to study high Reynolds number magnetohydrodynamics and applications to the dynamo effect. The flow is optimized using water experiments at scale 1/2 and kinematic dynamo simulations. In VKS run1, induction measurements are made in the presence of an externally applied field. Results are reported concerning the geometry of the induced field and its fluctuations in time
- …
