893 research outputs found
Splitting neutrino masses and showering into Sky
Neutrino masses might be as light as a few time the atmospheric neutrino mass
splitting. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit
relic ones at each mass in different resonance energies in our nearby Universe.
This non-degenerated density and energy must split UHE Z-boson secondaries (in
Z-Burst model) leading to multi injection of UHECR nucleons within future
extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens
EeV are better surviving local GZK cut-off and they might explain recent Hires
BL-Lac UHECR correlations at small angles. A different high energy resonance
must lead to Glashow's anti-neutrino showers while hitting electrons in matter.
In air, Glashow's anti-neutrino showers lead to collimated and directional
air-showers offering a new Neutrino Astronomy. At greater energy around PeV,
Tau escaping mountains and Earth and decaying in flight are effectively
showering in air sky. These Horizontal showering is splitting by geomagnetic
field in forked shapes. Such air-showers secondaries release amplified and
beamed gamma bursts (like observed TGF), made also by muon and electron pair
bundles, with their accompanying rich Cherenkov flashes. Also planet' s largest
(Saturn, Jupiter) atmosphere limbs offer an ideal screen for UHE GZK and
Z-burst tau neutrino, because their largest sizes. Titan thick atmosphere and
small radius are optimal for discovering up-going resonant Glashow resonant
showers. Earth detection of Neutrino showering by twin Magic Telescopes on top
mountains, or by balloons and satellites arrays facing the limbs are the
simplest and cheapest way toward UHE Neutrino Astronomy .Comment: 4 pages, 7 figures; an author's name correction and Journal Referenc
Two years of flight of the Pamela experiment: results and perspectives
PAMELA is a satellite borne experiment designed to study with great accuracy
cosmic rays of galactic, solar, and trapped nature in a wide energy range
(protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the
study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50
MeV-270 GeV) and search for antinuclei with a precision of the order of
). The experiment, housed on board the Russian Resurs-DK1 satellite,
was launched on June,  2006 in a  orbit with an
inclination of 70 degrees. In this work we describe the scientific objectives
and the performance of PAMELA in its first two years of operation. Data on
protons of trapped, secondary and galactic nature - as well as measurements of
the December  2006 Solar Particle Event - are also provided.Comment: To appear on J. Phys. Soc. Jpn. as part of the proceedings of the
  International Workshop on Advances in Cosmic Ray Science March, 17-19, 2008
  Waseda University, Shinjuku, Tokyo, Japa
Requirements and simulation study of the performance of EUSO as external payload on board the International Space Station
The "Extreme Universe Space Observatory - EUSO" has been conceived as the first Space mission devoted to the investigation of Ultra High Energy Cosmic Ray, using the Earth's atmosphere as a giant detector. The scientific objectives of the experiment are to observe the UHECR spectrum above the GZK energy, with an improvement of one order of magnitude in the statistics of collected events with respect to the existing experiments, in such a way to study the source distribution in a full sky survey, as well as to open the channel (set a confidence limit) on the neutrino astronomy in this energy range. Supposed to be accommodated as external payload on board the International Space Station, EUSO phase A study has been positively completed in July 2004. Nowadays, due to funding problems of the Space Agencies involved in the project, EUSO is currently on hold. Nevertheless, as result of an end-to-end simulation approach, we summarize here the expected scientific performance coming out from the phase A, as well as the expected improvements in the technical performance of the EUSO Instrument to be achieved during Phase B, in order to fulfil the scientific objectives posed as goal of the experiment
The EUSO simulation and analysis framework
ESAF is the simulation and analysis software framework developed for the EUSO experiment. ESAF's scope is the whole process of data simulations and data-analysis, from the primary particle interaction in atmosphere to the reconstruction of the event. Based on the ROOT package and designed using Object Oriented technology, ESAF is organized in two main programs: the full montecarlo simulation and the reconstruction framework. The former includes all the relevant physical contributions, shower development in atmosphere, light transport to the detector pupil and detector response, while the latter comprises basic data cleaning, track direction, shower profile and energy reconstruction algorithms. Here we describe the software architecture and its main features
Spatial and Temporal Dust Source Variability in Northern China Identified Using Advanced Remote Sensing Analysis
The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas
A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation
A new measurement of the cosmic ray antiproton-to-proton flux ratio between 1
and 100 GeV is presented. The results were obtained with the PAMELA experiment,
which was launched into low-earth orbit on-board the Resurs-DK1 satellite on
June 15th 2006. During 500 days of data collection a total of about 1000
antiprotons have been identified, including 100 above an energy of 20 GeV. The
high-energy results are a ten-fold improvement in statistics with respect to
all previously published data. The data follow the trend expected from
secondary production calculations and significantly constrain contributions
from exotic sources, e.g. dark matter particle annihilations.Comment: 10 pages, 4 figures, 1 tabl
Spatial Resolution of Double-Sided Silicon Microstrip Detectors for the PAMELA Apparatus
The PAMELA apparatus has been assembled and it is ready to be launched in a
satellite mission to study mainly the antiparticle component of cosmic rays. In
this paper the performances obtained for the silicon microstrip detectors used
in the magnetic spectrometer are presented. This subdetector reconstructs the
curvature of a charged particle in the magnetic field produced by a permanent
magnet and consequently determines momentum and charge sign, thanks to a very
good accuracy in the position measurements (better than 3 um in the bending
coordinate). A complete simulation of the silicon microstrip detectors has been
developed in order to investigate in great detail the sensor's characteristics.
Simulated events have been then compared with data gathered from minimum
ionizing particle (MIP) beams during the last years in order to tune free
parameters of the simulation. Finally some either widely used or original
position finding algorithms, designed for such kind of detectors, have been
applied to events with different incidence angles. As a result of the analysis,
a method of impact point reconstruction can be chosen, depending on both the
particle's incidence angle and the cluster multiplicity, so as to maximize the
capability of the spectrometer in antiparticle tagging.Comment: 28 pages, 18 figures, submitted to Nuclear Instruments and Methods in
  Physics Research 
Tracing very high energy neutrinos from cosmological distances in ice
Astrophysical sources of ultrahigh energy neutrinos yield tau neutrino fluxes
due to neutrino oscillations. We study in detail the contribution of tau
neutrinos with energies above PeV relative to the contribution of the other
flavors. We consider several different initial neutrino fluxes and include tau
neutrino regeneration in transit through the Earth and energy loss of charged
leptons. We discuss signals of tau neutrinos in detectors such as IceCube, RICE
and ANITA.Comment: 27 pages, 19 figure
Time dependence of the e^- flux measured by PAMELA during the July 2006 - December 2009 solar minimum
Precision measurements of the electron component in the cosmic radiation
provide important information about the origin and propagation of cosmic rays
in the Galaxy not accessible from the study of the cosmic-ray nuclear
components due to their differing diffusion and energy-loss processes. However,
when measured near Earth, the effects of propagation and modulation of galactic
cosmic rays in the heliosphere, particularly significant for energies up to at
least 30 GeV, must be properly taken into account. In this paper the electron
(e^-) spectra measured by PAMELA down to 70 MeV from July 2006 to December 2009
over six-months time intervals are presented. Fluxes are compared with a
state-of-the-art three-dimensional model of solar modulation that reproduces
the observations remarkably well.Comment: 40 pages, 18 figures, 1 tabl
PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy
The satellite-borne experiment PAMELA has been used to make a new measurement
of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which
extends previously published measurements down to 60 MeV and up to 180 GeV in
kinetic energy. During 850 days of data acquisition approximately 1500
antiprotons were observed. The measurements are consistent with purely
secondary production of antiprotons in the galaxy. More precise secondary
production models are required for a complete interpretation of the results.Comment: 11 pages, 3 figures, 1 table. Accepted for publication in Physical
  Review Letter
- …
