739 research outputs found
Novel methods to measure the gravitational constant in space
We present two novel methods, tested by LISA Pathfinder, to measure the gravitational constant G for the first time in space. Experiment 1 uses electrostatic suspension forces to measure a change in acceleration of a test mass due to a displaced source mass. Experiment 2 measures a change in relative acceleration between two test masses due to a slowly varying fuel tank mass. Experiment 1 gave a value of G=6.71±0.42(×10-11)¿¿m3¿s-2¿kg-1 and experiment 2 gave 6.15±0.35(×10-11)¿¿m3¿s-2¿kg-1, both consistent with each other to 1s and with the CODATA 2014 recommended value of 6.67408±0.00031(×10-11)¿¿m3¿s-2¿kg-1 to 2s. We outline several ideas to improve the results for a future experiment, and we suggest that a measurement in space would isolate many terrestrial issues that could be responsible for the inconsistencies between recent measurements.Peer ReviewedPostprint (published version
LISA pathfinder micronewton cold gas thrusters: in-flight characterization
The LISA Pathfinder (LPF) mission has demonstrated the ability to limit and measure the fluctuations in acceleration between two free falling test masses down to sub-femto-g levels. One of the key elements to achieve such a level of residual acceleration is the drag free control. In this scheme the spacecraft is used as a shield against any external disturbances by adjusting its relative position to a reference test mass. The actuators used to move the spacecraft are cold gas micropropulsion thrusters. In this paper, we report in-flight characterization of these thrusters in term of noise and artefacts during science operations using all the metrology capabilities of LISA Pathfinder. Using the LISA Pathfinder test masses as an inertial reference frame, an average thruster noise of ~0.17¿¿µN/Hz is observed and decomposed into a common (coherent) and an uncorrelated component. The very low noise and stability of the onboard metrology system associated with the quietness of the space environment allowed the measurement of the thruster noise down to ~20¿¿µHz, more than an order of magnitude below any ground measurement. Spectral lines were observed around ~1.5¿¿mHz and its harmonics and around 55 and 70 mHz. They are associated with the cold gas system itself and possibly to a clock synchronization issue. The thruster noise-floor exhibits an excess of ~70% compared to characterization that have been made on ground on a single unit and without the feeding system. However this small excess has no impact on the LPF mission performance and is compatible with the noise budget for the upcoming LISA gravitational wave observatory. Over the whole mission, nominal, and extension, the thrusters showed remarkable stability for both the science operations and the different maneuvers necessary to maintain LPF on its orbit around L1. It is therefore concluded that a similar cold gas system would be a viable propulsion system for the future LISA mission.Peer ReviewedPostprint (author's final draft
Temperature stability in the sub-milliHertz band with LISA Pathfinder
This article has been accepted for publication in "Monthly notices of the royal astronomical society" published by Oxford University Press.LISA Pathfinder (LPF) was a technology pioneering mission designed to test key technologies required for gravitational wave detection in space. In the low frequency regime (milliHertz and below), where space-based gravitational wave observatories will operate, temperature fluctuations play a crucial role since they can couple into the interferometric measurement and the test masses’ free-fall accuracy in many ways. A dedicated temperature measurement subsystem, with noise levels in 10¿µK¿Hz-1/2 down to 1¿mHz was part of the diagnostics unit onboard LPF. In this paper we report on the temperature measurements throughout mission operations, characterize the thermal environment, estimate transfer functions between different locations, and report temperature stability (and its time evolution) at frequencies as low as 10¿µHz, where typically values around 1¿K¿Hz-1/2 were measured.Peer ReviewedPreprin
Digital upgrade of a bandsaw machine through an innovative guidance system based on the digital shadow concept
Nowadays, there is an increasing trend towards advanced CNC machine tools having a high level of automation. Nevertheless, manually operated equipment is still playing an important role in many industrial workshops. Operators’ experience is still essential in the perspective of increasing productivity, enhancing product quality, reducing manufacturing costs related to tool wear, waste and maintenance. Thus, even manual operations that are apparently less important in terms of product added value may deserve attention and need to be improved according to the principles of the digital transformation era. This paper introduces a structured approach for design, development and implementation of an operator guidance system for a manual bandsaw machine, based on the digital shadow concept and additional feedback sensors. This provides an actual example of how the digital transformation of a small-scale equipment may improve the manufacturing performance and ergonomics as well
Measuring random force noise for LISA aboard the LISA Pathfinder mission
The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA
Pathfinder mission, aims to demonstrate drag-free control for LISA test masses
with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper
describes the LTP measurement of random, position independent forces acting on
the test masses. In addition to putting an overall upper limit for all source
of random force noise, LTP will measure the conversion of several key
disturbances into acceleration noise and thus allow a more detailed
characterization of the drag-free performance to be expected for LISA.Comment: 7 pages, 3 figures. To be published in Classical and Quantum Gravity
with the proceedings of the 2003 Amaldi Meetin
Measuring the LISA test mass magnetic proprieties with a torsion pendulum
Achieving the low frequency LISA sensitivity requires that the test masses
acting as the interferometer end mirrors are free-falling with an unprecedented
small degree of deviation. Magnetic disturbances, originating in the
interaction of the test mass with the environmental magnetic field, can
significantly deteriorate the LISA performance and can be parameterized through
the test mass remnant dipole moment and the magnetic susceptibility
. While the LISA test flight precursor LTP will investigate these effects
during the preliminary phases of the mission, the very stringent requirements
on the test mass magnetic cleanliness make ground-based characterization of its
magnetic proprieties paramount. We propose a torsion pendulum technique to
accurately measure on ground the magnetic proprieties of the LISA/LTP test
masses.Comment: 6 pages, 3 figure
Proposta de planejamento estratégico para a Embrapa Trigo.
Orientadora: Denise Michael dos Santos, Coorientador: Alvaro Augusto Dossa
Holographic quark matter with colour superconductivity and a stiff equation of state for compact stars
We present a holographic model of QCD with a first order chiral restoration
phase transition with chemical potential, mu. The first order behaviour follows
from allowing a discontinuity in the dual description as the quarks are
integrated out below their constituent mass. The model predicts a deconfined
yet massive quark phase at intermediate densities (350 MeV< mu <500 MeV), above
the nuclear density phase, which has a very stiff equation of state and a speed
of sound close to one. We also include a holographic description of a colour
superconducting condensate in the chirally restored vacuum and study the
resulting equation of state. They provides a well behaved first order
transition from the deconfined massive quark phase at very high density (mu>500
MeV). We solve the Tolman-Oppenheimer-Volkoff equations with the resulting
equations of state and find stable hybrid stars with quark cores. We compute
the tidal deformability for these hybrid stars and show they are consistent
with LIGO/Virgo data on a neutron star collision. Our holographic model shows
that quark matter could be present at the core of such compact stars.Comment: 17 pages, 14 figure
Upper limits on stray force noise for LISA
We have developed a torsion pendulum facility for LISA gravitational
reference sensor ground testing that allows us to put significant upper limits
on residual stray forces exerted by LISA-like position sensors on a
representative test mass and to characterize specific sources of disturbances
for LISA. We present here the details of the facility, the experimental
procedures used to maximize its sensitivity, and the techniques used to
characterize the pendulum itself that allowed us to reach a torque sensitivity
below 20 fNm /sqrt{Hz} from 0.3 to 10 mHz. We also discuss the implications of
the obtained results for LISA.Comment: To be published in Classical and Quantum Gravity, special issue on
Amaldi5 2003 conference proceedings (10 pages, 6 figures
- …