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Abstract  

Background 

Publicly available datasets of microarray gene expression signals represent an 

unprecedented opportunity for extracting genomic relevant information and validating 

biological hypotheses. However, the exploitation of this exceptionally rich mine of 

information is still hampered by the lack of appropriate computational tools, able to 

overcome the critical issues raised by meta-analysis.  

Results 

This work presents A-MADMAN, an open source web application which allows the 

retrieval, annotation, organization and meta-analysis of gene expression datasets 

obtained from Gene Expression Omnibus. A-MADMAN addresses and resolves 

several open issues in the meta-analysis of gene expression data.  

Conclusions 

 A-MADMAN allows i) the batch retrieval from Gene Expression Omnibus and the 

local organization of raw data files and of any related meta-information, ii) the re-

annotation of samples to fix incomplete, or otherwise inadequate, metadata and to 

create user-defined batches of data, iii) the integrative analysis of data obtained from 

different Affymetrix platforms through custom chip definition files and meta-

normalization. Software and documentation are available on-line at 

http://compgen.bio.unipd.it/bioinfo/amadman/. 
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Background  

Public databases of microarray gene expression data have been quickly growing as the 

use of high-throughput techniques has become routine in genome-wide studies. Major 

repositories of microarray data, e.g. Gene Expression Omnibus [1], ArrayExpress [2], 

or Stanford Microarray Database [3], are exceptionally rich mines of genomic 

information and exploiting their content, through meta-analysis, represents an 

unprecedented opportunity to improve the interpretation and validation of expression 

studies. Meta-analysis of large microarray expression datasets allows researchers to 

confirm biological hypotheses, formulated from results of a study, in a relatively 

inexpensive way, i.e. using data independently obtained in another laboratory, without 

the need of novel experiments. Meta-analysis also offers the opportunity of re-

analyzing formerly available data, in combination with new samples and state-of-the-

art computational methods, thus increasing the reliability and robustness of results. 

Finally, meta-analysis enhances the capabilities of bioinformatics methods to obtain 

precise estimates of gene expression differentials and to assess the heterogeneity of 

overall estimates. 

Challenges of integrative analysis of expression data 

In recent years, different strategies to combine results from independent but related 

studies have been proposed. The choice of the most effective meta-analysis technique 

depends on the type of response (e.g., binary, continuous, survival) and on the 

objective of the study. Meta-analysis strategies can be divided into two broad classes: 

data integration and data combination. Statistical techniques as vote counting [4], p-

value or rank combination [5-7] and effect size estimation [8] have been used for 

meta-analyses based on data integration. Instead, data combination encompasses the 
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direct comparison of different studies, is applicable only when expression profiles 

have been obtained using the same array technology (e.g. Affymetrix, Agilent, 

Illumina, etc.) and requires an ad-hoc normalization step of the raw data files.  

Despites numerous efforts, mining and analyzing publicly available microarray data 

still represents a bioinformatics challenge and the lack of appropriate tools able to 

overcome critical issues, as annotation, cross-platform comparison and handling of 

metadata, is still hampering the potentialities of large-scale meta-analyses. Performing 

a meta-analysis of independent microarray studies requires to carefully handle the 

heterogeneity of array designs, which complicates cross-platform integration, and of 

sample descriptions, which impact the correct characterization of specimens. At least 

for the case of Affymetrix arrays, cross-platform comparison has partially been solved 

by the adoption of custom Chip Definition Files (custom-CDF) which, relating probe 

sequences to annotated entities as genes or transcripts, allow matching expression 

profiles across subsequent generations of microarrays [9-11]. Instead, retrieval, 

organization and utilization of meta-information is still an extremely critical step 

which impacts the correct match between raw data files and sample IDs and the 

organization of samples into meaningful, homogeneous groups. This task is further 

complicated by the fact that i) datasets may be incompletely annotated, ii) the 

relationship between specimen, biological sample, phenotypic characteristics and raw 

data files, the most granular object in repositories, may be not sufficiently explicit, 

and iii) the procedures for managing large numbers of data files and related meta-

information are tedious and error prone [12].  

Available tools 

Different computational tools have been proposed for retrieval and meta-analysis of 

microarray expression data [13-21]. In particular, GEOSS (formerly GeneX) is a web-
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interfaced system for the storage and local analysis of microarray data [13]; 

CrossChip uses probe by probe sequence comparison to integrate data from different 

generations of Affymetrix arrays [14]; the server version of SeqExpress has a GEO 

integration tool which allows for retrieval and analysis of GEO Data Sets and GEO 

Series [15]; GenePattern contains a module (GEOImporter) for importing single GEO 

Data Sets or Series [16]; WGAS is a multi-purpose web-based analysis system [17]; 

GEOquery is a Bioconductor package for downloading and parsing SOFT files from 

GEO [18]; EzArray, is an Affymetrix-centered analysis system [19]; Microarray 

Retriever (MaRe) allows batch retrieval of microarray data from GEO and 

ArrayExpress according to user-defined searching criteria [20]; EMAAS allows 

importing and analyzing data from several repositories including GEO [21]. Some of 

these tools provide a user friendly interface for searching and retrieval of data from 

GEO and ArrayExpress, others implement database structures for storing and locally 

organizing the data and others offer modules for applying well established meta-

analysis algorithms and procedures. However, none of them allows altogether i) the 

batch retrieval and local organization of raw data files and of any related meta-

information, ii) the re-annotation of samples to create user-defined batches of data, iii) 

the integrative analysis of data obtained from different platforms, and iv) the sharing 

of data, meta-information, analysis flows and results. 

A-MADMAN approach 

The purpose of this paper is to present A-MADMAN, an open source web application 

for the meta-analysis of Affymetrix data contained in Gene Expression Omnibus 

(GEO). A-MADMAN allows retrieving, annotating, organizing and analyzing gene 

expression datasets. In particular, A-MADMAN addressees several of previously 

stated open issues in the meta-analysis of gene expression data allowing the 
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integrative analysis of data obtained from different Affymetrix platforms through 

custom chip definition files and meta-normalization and the sharing of analysis flows 

and results. 
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Implementation 

Architecture 

A-MADMAN is a web application that allows retrieving gene expression datasets 

from GEO, annotating and locally organizing the downloaded samples, and 

generating an R object (ExpressionSet) which contains the integrated expression 

levels and all available metadata and sample characteristics. The gene expression data 

are obtained through a meta-analysis approach which includes signal generation, 

probe re-annotation into gene-centered identifiers, merging of expression levels from 

different experiments and a normalization step. A-MADMAN generates an 

ExpressionSet object in which the meta-expression levels from multiple experiments 

are completed by GEO-derived and user-defined metadata. The final ExpressionSet 

contains all the necessary information to perform, directly in R, any higher level 

analysis (e.g., SAM or limma) of all downloaded and integrated data. 

A-MADMAN web application comprises a console, a job server and a web-

application (Figure 1). The console is needed for the first phases of data retrieval, 

import and database filling. It performs the automatic download and organization, in a 

proper and transparent file system hierarchy, of raw data and annotations from Gene 

Expression Omnibus, starting from a configuration file listing the accession numbers 

of GEO series and/or samples to download. Metadata of GEO records are 

automatically imported into a local relational database to assist subsequent manual 

annotation and selection of samples from the web application. The job server is in 

charge for asynchronous execution of jobs which, depending on data size and 

algorithm, can be computationally intensive and take longer than allowed by an HTTP 
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response-request cycle. The core of the framework is the web application, whose user 

friendly front-end facilitates data organization, annotation and analysis (Figure 2). 

Technical details 

The software, written in python [22], is based on the popular Django web framework 

[23] and uses the R environment for statistical computing as a backend [24] [see 

Additional file 1]. A-MADMAN supports a collaborative working style for local or 

geographically dispersed teams through LAN or Internet deployment options, but can 

also be installed on a single personal computer with Windows operating system 

through an all-in-one package that bundles all required dependencies except R. The 

stand-alone package is completed by supporting material (i.e., program description 

and installation instructions) and by a step-by-step tutorial [25]. 

A-MADMAN natively supports retrieval and analysis of human data, but it can be 

customized, as explained in the documentation, for analyzing data from other species 

or to use third party custom CDF sets. 
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Results 

Data organization 

The User logins into the A-MADMAN web application with a personal account. A 

user may be part of a Group of users sharing the same rights on projects and related 

resources. A Project is a collection of samples, series, tags, baskets and analyses 

owned by a group. Series and samples are the primary data objects imported via the 

console commands. A Sample is a single experiment, each associated to a CEL file 

and to metadata extracted from the GEO miniml file. A Series is a collection of 

samples, as defined in GEO.  

The user can create additional data entities, critical for planning and execution of 

analyses, and associate them to primary data. In particular, A-MADMAN supports the 

following entities: 

Individual: a given biological entity (e.g., a patient) to which one or many samples 

refer to; 

Tag: a free-text, descriptive label assigned to any sample and used for sample 

selection and grouping. The tags menu allows managing and creating tags to 

annotate/describe samples, through a labeling system whose complexity depends on 

the project, on the biological question and on the type of analysis. 

Basket: a named collection of samples obtained making a logical query on tags. 

Data annotation 

Data and metadata of selected Series and Samples, automatically downloaded from 

GEO, are imported into A-MADMAN and organized in a file system hierarchy. 

Sample characterization can be further enriched by user-defined annotations and tags. 



 - 10 - 

The tag based annotation system is central to A-MADMAN meta-analysis philosophy 

and can be used to: 

i) exploit GEO metadata information, although incomplete, inaccurate and 

not conform to a controlled vocabulary. The A-MADMAN tag system 

allows the user to define his own vocabulary and consistency is enforced 

by the software itself (i.e. new tags must be defined and described before 

usage); 

ii) test new hypotheses not envisioned by the original authors enriching the 

sample annotations with information derived from bibliographic references 

or from other sources. 

Samples can be grouped in user-defined data baskets on the basis of logical queries 

performed on tag information (Figures 1 and 3). A parsing system has been 

implemented to specifically support this flexible extraction mechanism. The parser 

exploits a simple, custom query language where standard Boolean operators and 

explicit parenthesis precedence allow the user to populate baskets using a friendly 

interface and an almost natural language expression. For instance, once collected a 

muscle-related gene expression database and created a muscle physiology and disease 

tag system, a query like ‘young AND male AND dystrophy AND NOT (Becker OR 

limb-girdle)’ allows populating a Basket with only those samples derived from young, 

male patients affected by any muscular dystrophy different from the Becker’s or the 

Erb’s ones. 

Baskets can contain Samples from different platforms. Gene expression signals 

generation, platforms integration and normalization are then performed on Baskets 

according to the basic analysis workflow shown in Figure 3. 
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The labeling system allows creating data structures which are tailored to the 

subsequent meta-analysis. For instance, samples can be tagged to identify 

differentially expressed genes from two-class or multi-class comparisons or may be 

labeled to generate a large data matrix, accounting for different biological contests, 

when the goal is to detect co-expressed genes. Practically, the user can Create a 

custom Tags system and use it for tagging series/samples. The tag annotation system 

is based on the conceptual model of bottom-up classification, recently exploited by 

many social network web sites to organize and search data not amenable to enter a 

predefined and unambiguous taxonomy. This model enables the user to create a 

project-tailored, controlled, but unconstrained vocabulary to describe biological or 

technical characteristics of samples, which may be significant and informative 

according to the specific scopes of a meta-analysis. 

One of the most critical problems in meta-analyses is originated by the inexplicit 

relationship among individuals/patients and samples. The granularity of Affymetrix-

based gene expression data in GEO is represented by .CEL files but, depending on the 

platform, the RNA of a single individual may have been hybridized to more than one 

array, i.e. may be associated to more than a single .CEL file. A typical example of this 

one-to-many association between individuals and .CEL files is represented by the 

HG-U95 and HG-U133 sets with up to 5 or 2 possible raw data files for each 

biological sample, respectively, and a given .CEL file is not directly associated to a 

patient/sample ID. Said that, A-MADMAN interface considerably facilitate the 

matching of individuals to .CEL files and metadata, which can be inferred by 

combining metadata with information available in other formats and repositories, e.g. 

in a publication, in a supplementary information file, in a study-dedicated web site. A-

MADMAN can relate each Sample to an Individual in two ways, i.e. through an 
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automatic assignment (unique IDs, representing individuals, are given to samples) or 

using a knowledge-based assignment. In the latter case, the user-friendly interface 

allows matching samples and individuals according to the information derived from 

GEO or from original references or project websites. 

Dataset/s extraction 

Once samples are tagged and assigned to individuals, the user may set up a query, 

based on a Boolean combination of annotation tags, to select and Extract samples and 

put them in a basket. The baskets represent the starting point of the subsequent 

analysis, i.e. the objects from which expression profiles are generated and information 

for the supervised comparisons are retrieved. Once selected one or more available 

baskets, all analyses will be conducted automatically, following a workflow selected 

by the user.  

Analyses 

The action Analyses of A-MADMAN allows viewing analyses status, debugging 

information, logs and results, while the Administration action allows the 

administration of users, groups and projects, according to the allotted permissions. 

Analyses are conducted by the R backend powered by packages of the Bioconductor 

project [26], downloaded and installed automatically the first time they are required.  

A-MADMAN contains a standard analysis workflow which may be applied to one or 

more baskets, but any User can create custom workflows, editing a workflow 

template, and share them within a Group. This feature makes easily customizable and 

expandable the analysis flow. The basic analysis workflow comprises the following 

steps:  
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1. creation of a work directory named after the current analysis and copy of the 

selected raw data files to the work directory; 

2. signal reconstruction using RMA algorithm [27]; 

3. generation of an ExpressionSet containing expression profiles and metadata; 

4. integration of different chip platforms trough matching of platform-dependent 

probesets to integrated probesets. 

5. normalization of the final ExpressionSet with quantile distribution 

transformation [28]. 

The standard workflow is implemented as a template with three blocks of code that 

can be modified or replaced by the user, through the web interface, to define custom 

workflows. Specifically, the user can customize the cdf_flavour, i.e. the type of CDF 

used in the signal reconstruction (the default is GeneAnnot-based CDFs), the 

signal_reconstruction, i.e. the algorithm and parameters for signal reconstruction (the 

default is RMA with standard parameters), and the additionalcode block containing 

code to be run after the platform integration phase (the default performs the meta-

normalization code). Blocks are written mixing R code [24] and some tags of the 

Django templating engine [23] and must conform to some conventions detailed in the 

A-MADMAN documentation. This type of customization, where the user can directly 

change the template code, allows a greater flexibility as compared to implementing a 

web interface with a fixed number of analytical options. The workflow customization 

is particularly useful in the frame of a collaborative resource, allowing easy sharing of 

both data and analysis schemas. 

Signal reconstruction 
 

A-MADMAN supports different Affymetrix platforms and the integration of data 

obtained with subsequent generations of chips is achieved through the annotations of 
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several, gene-centered CDF packages [see Additional file 2]. In a given meta-analysis 

project, a subset of supported platforms will be represented. The first step of analysis 

is the platform-specific quantification of expression levels from probes intensities. 

This can be carried out using RMA, probably the most efficient algorithm when 

dealing with the elevate number of Affymetrix arrays of a meta-dataset [27]. In this 

phase microarray probes can be re-organized and annotated using different Chip 

Definition Files [10, 11]. In particular, for human expression data, the user may 

choose among standard Affymetrix CDFs [29], GeneAnnot-based CDFs [30] or 

Entrez-based CDFs [31].  

If the data baskets under consideration are composed by samples obtained from more 

than one platform, RMA will be carried out separately for each platform on all those 

samples which are homogeneous with respect to the selected CDF (Figure 3). Gene 

expression levels and metadata, originating from GEO or from user-defined 

annotations, are then incorporated into an ExpressionSet object, i.e., into the 

Bioconductor class that contains and describes microarray expression level assays.  

Platforms integration  
 

The annotations of the selected CDFs are used to generate a non-redundant list of 

gene-centered identifiers, each derived from one or more platform-specific 

probesets/metaprobesets. This list constitutes the backbone grid of the integrated data 

matrix whose values will be composed from gene expression signals derived from the 

various samples. Since each platform represented in the baskets will contribute 

expression data according to a list of platform-CDF dependent probesets (or 

metaprobesets), the values of the integrated data matrix will be obtained averaging the 

expression levels of the various platform-specific probesets/metaprobesets (Figure 2). 

It’s worthwhile noting that if the original Affymetrix CDF is chosen, the expression 
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values pertaining to a gene maybe averaged twice, i.e. intra and inter platform, given 

the probe redundancy inherent in these definition files. 

According to the adopted CDF and to the combination of platforms in the basket, a 

fraction of the gene identifiers in the integrated data matrix may include some <NA> 

values. Since expression vectors including some <NA> values may represent a 

problem for the subsequent analyses, the user may choose to fill empty cells using a 

specific function, e.g. SAM imputes missing values via a K-Nearest Neighbor 

algorithm. In the case that a given gene is not represented in any platform of the 

baskets, i.e. if the data matrix has an entire row of <NA>, the record will be pruned so 

that the final integrated expression matrix contains only non-empty expression 

vectors. 

Finally, the integrated data matrix is normalized to remove experiment-dependent 

biases. This normalization procedure is a crucial step to limit misleading outcomes 

due to the direct integration of different datasets. Among the various normalization 

techniques proposed for microarray meta-analysis, the quantile distribution 

transformation has been demonstrated to be highly efficient for normalizing data 

across experiments [28]. Data transformations based on a reference empirical 

distribution function, in fact, have been extensively applied on single channel 

microarray technologies showing their ability to increase inter-studies expression 

comparability. In this case, the median expression across the experiments with the 

largest available number of probesets has been used as the reference empirical 

distribution function in the quantile normalization.  

After normalization, the integrated data matrix represents the observed expression 

levels of the final ExpressionSet object, while GEO-derived and user-defined 

metadata compose the phenoData slot. As such, the ExpressionSet contains all the 
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necessary information to perform any higher level analysis (e.g., SAM or limma) 

directly in R. 

An example on muscle expression data  

As a simple case study, we collected, annotated and analyzed with A-MADMAN a 

muscle-related gene expression dataset with the following main steps:  

1. Data belonging to the GEO series GSE3307 (239 CEL files and related 

metadata) were downloaded and imported in a Project called “muscle-survey”. 

The series belongs to the platforms GPL96 and GLP97  (Affymetrix HG-

U133A and HG-U133B respectively), since most muscle biological samples 

were hybridized to both chips of the set. 

2. Metadata and information coming from the original paper [32] were used to: 

a) Build up a tag system, defining samples characterization (healthy, 

disease, age  and disease type); 

b) Apply the tags to the samples, obtaining an annotated database. 

3. Samples were manually assigned to the corresponding individual IDs: Some 

individuals are represented two times in the samples (by two CEL files, one 

for each chip), since the same biological sample was hybridized to both 

platforms. 

4. The query-based system was used to extract from the database three baskets:  

a) A basket of 34 normal muscle samples for a total of 18 individuals; 

b) Two baskets of Duchenne and Becker muscular dystrophy samples 

containing 20 and 9 samples respectively for a total of 15 individuals. 

5. The default workflow (signal reconstruction, platform integration and 

normalization) was applied separately to the basket of normal samples and to 
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the pair of Duchenne and Becker baskets, thus obtaining two ExpressionSets 

representing 11,174 GeneAnnot genes: 

a) An ExpressionSet , collecting gene expression levels in normal muscle 

tissue, which can be exported and used for a classic co-expression 

analysis. 

b) An ExpressionSet ready for the comparison of Duchenne and Becker 

expression profiles, for instance by SAM, to find genes differentially 

expressed in the two forms of the muscular dystrophy. 
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Discussion 

In recent years, high-throughput technologies represented a breakthrough for the 

analysis of gene expression levels and hundreds of microarray-based studies 

generated an overwhelming mass of potentially valuable data. Most of these data are 

organized in major repositories, are publicly available, and their meta-analysis 

represents an enormous opportunity for biologists and geneticists. However, the meta-

analysis of data, obtained using a plethora of array platforms and experimental 

protocols in different laboratories, represents also a complex task for bioinformatics. 

Indeed, the integrated analysis of microarray data generated by different research 

groups on different array platforms requires ad-hoc computational methods to retrieve 

raw data files and any related meta-information, to fix incomplete, or otherwise 

inadequate, sample annotations, to integrate multiple data sets obtained using different 

technologies and to remove center- and platform-specific biases from the final 

integrated signals. 

Despite major efforts to provide guidelines, formats, and standards for the annotation 

of microarray experiments, the identification, collection, and analysis of publicly 

available data sets still remains a cumbersome and error-prone process, further 

complicated by the heterogeneity of array designs and of sample characterization. The 

latter are among the most critical issues hampering meta-analysis approaches, since 

heterogeneous array designs complicate cross-platform integration and incomplete, or 

often inadequate, characterizations of specimens limit the robustness of statistical 

analyses. For the case of Affymetrix assays, the cross-platform comparison can partly 

be solved re-defining the array geometry through custom definition files and re-

annotating the probesets in terms of unique entities (e.g., genes or transcripts). An 
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expression profile associated to a unique gene identifier can be more easily matched 

across subsequent generations of microarrays [9-11] than a signal generated from a 

platform-dependent probeset. On the contrary, retrieval, organization and utilization 

of sample characterizations (i.e. the meta-information) are still critical and often 

severely limit the possibility to organize samples into biologically meaningful and 

homogeneous groups. Indeed, the relationship between specimen, biological sample, 

phenotypic characteristics and raw data files, the most granular object in repositories, 

may be not sufficiently explicit or, even worse, may be scattered around the web as 

supplementary data to a scientific manuscript. As such, procedures for efficiently 

associating large numbers of data files and their related meta-information may be 

extremely tedious and error prone [12]. 

Several software and web tools have been proposed for retrieval, organization and 

meta-analysis of microarray expression data from public repositories [13-21]. 

However, none of them offers the possibility to retrieve and organize both data and 

meta-information, to use the latter to re-annotate samples, and integrate data obtained 

from different platforms. 

A-MADMAN is a novel tool for meta-analysis of Affymetrix data contained in Gene 

Expression Omnibus, which allows retrieving, annotating, organizing and analyzing 

gene expression datasets. In particular, A-MADMAN addressees i) the batch retrieval 

from Gene Expression Omnibus and the local organization of raw data files and of 

any related meta-information, ii) the re-annotation of samples, iii) the creation of user-

defined batches of data through queries performed on sample labels, and iii) the 

integrative analysis of data obtained from different platforms through custom chip 

definition files and meta-normalization. 
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The batch retrieval of gene expression data from both GEO and Array Express can be 

carried out using WGAS [17],  MaRe [20] and EMAAS [21] while EzArray [19], the 

GEOquery package of Bioconductor [18], the server version of SeqExpress [15] and 

the GEOImporter module of GenePattern [16] are limited to data deposited in GEO. 

In particular, the GEOImporter module of GenePattern allows retrieving only a single 

series at once and does not permit to perform sub-selections of samples. MaRe, 

EMAAS and WGAS can retrieve multiple series/datasets. However, MaRe is limited 

to the simple search and retrieval of data (i.e. no further local action is taken after 

retrieval), while the web centralization of  WGAS poses serious operative limitations 

with very large datasets. A-MADMAN, once downloaded raw files and meta-

information, locally organizes and displays the data through a user-friendly interface. 

Moreover, once data and metadata are retrieved, organized and annotated by A-

MADMAN, they constitute a stable dataset which, being available through a web 

application, can be used to define and analyze different subsets of samples for 

answering different biological questions. The possibility of re-annotating samples, 

through user-defined assignments, is a peculiar feature of A-MADMAN and an 

improvement over all other available tools for meta-analysis. Indeed, a flexible 

assignment of .CEL files to specimens and a proper tracking of this association are 

necessary steps to efficiently exploit the mass of available data. However, handling 

multiple sample labeling and creating sub-classes of data may be so laborious and 

error-prone to discourage any meta-analysis diverse from the simple reproduction of 

the original experimental design. In A-MADMAN, samples are annotated using not 

only the original metadata but also a proprietary, controlled, but unconstrained 

vocabulary of descriptive terms. This project-tailored vocabulary allows adding 

biological, clinical, technical descriptions to the original sample annotations, thus 
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widening the scopes of a meta-analysis. The annotation of samples through tags 

allows the definition and the extraction of any subset of data and, in principle, the 

meta-analysis of any user-defined experimental design. Specifically, one or multiple 

baskets of samples can be defined and extracted from the whole database simply 

using Boolean queries on the available tags and then used to construct any custom 

data matrix. 

The platform integration step is not clearly addressed by most of the available tools. 

Indeed, the ExpressionFileCreator module of GenePattern, although allowing the use 

of custom CDF, cannot consider more than one platform at the time. Similarly, 

EzArray and EMAAS permit the analysis of only one type of Affymetrix platform in 

a given project. CrossChip [14], instead, uses probe by probe sequence comparison to 

integrate data from different generations of Affymetrix arrays. In CrossChip, when 

comparing Affymetrix platforms, only probes that have a certain amount of overlap in 

their nucleotide sequences in both arrays are retained in a mask file, which is later 

applied to the original .CEL files to generate new .CEL files. The new .CEL can be 

then be processed using any signal quantification algorithm. The major limitation of 

CrossChip is that only two platforms at the time can be compared. Differently, A-

MADMAN can handle and integrate data generated by any type of Affymetrix arrays. 

Specifically, considering a set of samples obtained from more than one platform, 

expression signals are quantified separately for each platform on all those samples 

which are platform-homogeneous (Figure 3). Gene expression levels and metadata are 

incorporated into as many ExpressionSet objects as the different platforms represented 

in the baskets. The expression data of the various ExpressionSet (e.g., generated using 

RMA) are then integrated into a unique data matrix using a non-redundant list of 

gene-centered identifiers each derived from one or more platform-specific 
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probesets/meta-probesets, using standard or custom CDFs. Each platform represented 

in the baskets contributes expression data according to a list of platform-CDF 

dependent probesets (or meta-probesets) and the values of the integrated data matrix 

are obtained averaging the expression levels of the various platform-specific 

probesets/metaprobesets (Figure 3). The final step of the integration is inter-platform 

quantile normalization, i.e. a data transformation using, as reference empirical 

distribution function, the median expression across the experiments with the largest 

available number of probesets.  

A-MADMAN outputs an ExpressionSet object, which contains all the necessary 

information to perform any higher level analysis, i.e., the integrated data matrix of 

normalized expression levels and the GEO/user-defined metadata. 

Conclusions 

We developed A-MADMAN a novel software which allows the retrieval, 

organization and meta-analysis of microarray expression data from public 

repositories. A-MADMAN presents several features not available in any current tool 

and specifically designed to plan and conduct meta-analyses of microarray expression 

data: i) perform the batch retrieval and local organization of raw data files and of any 

related meta-information, ii) re-annotate samples using meta-information, iii) create 

user-defined batches of specimens, and iv) integrate data obtained from different 

platforms through custom chip definition files and meta-normalization. 
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Availability and requirements 

• Project name: A-MADMAN 

• Project home page: http://compgen.bio.unipd.it/bioinfo/amadman/ 

•  Operating systems: POSIX compliant and Win32 (developed on 

GNU/Linux) 

•  Programming languages: Python, R 

• Other requirements: GNU R >= 2.8  

• License: GNU GPL v3 or any later version 

List of abbreviations 

GEO: Gene Expression Omnibus; CDF: Chip Definition File; HTTP: Hypertext 

Transfer Protocol; SOFT: Simple Omnibus Format in Text; SAM: Significance 

Analysis of Microarrays; NA: Not Available; miniml: MIAME Notation in Markup 

Language; MIAME: Minimum Information About a Microarray Experiment; RMA: 

Robust Multi-chip Analysis;  
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Figure legends 

Figure 1 - A-MADMAN architecture. 

A-MADMAN includes console, job server and web-application. The console allows 

data retrieval, import and database filling. The web application is the user friendly and 

collaborative core of the system allowing data inspection, annotation and analysis. A 

Project is a collection of samples, series, tags, baskets and analyses owned by a user 

or by a group of users. Series and samples data and metadata come from GEO. The 

user can create an annotation system based on tags and assign samples to individuals. 

Queries on Boolean combination of annotation tags are used to select and extract 

groups of samples, giving rise to baskets. One or more baskets are passed to a 

customisable analysis workflow (a job server is in charge for asynchronous execution 

of jobs) outputting an R workspace, facilitating following analyses. 

 

Figure 2 - Screenshot of the A-MADMAN web application. 

The figure shows a series object, with associated data, metadata, user-defined 

annotation and sample assignment. A tag cloud indicates the relative frequency of 

tags associated to samples pertaining to the series. 

 

Figure 3. - Outline of the basic analysis workflow of A-MADMAN.  

Once data and metadata are downloaded, organized and annotated, tag-based queries 

can be used to create data baskets. In the figure two data baskets are represented, each 

including samples obtained from three platforms (circles represent samples; red and 
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blue borders represent two different baskets, corresponding for instance to healthy and 

diseased individuals; yellow, green ad light blue filling represent different platforms; 

numbers indicates specific individuals; squares stand for single expression values). 

RMA is carried out separately for each platform, according to the selected CDF, and 

gene expression levels and metadata, originating from user-defined annotations, are 

incorporated into a number of ExpressionSet objects corresponding to represented 

platforms. The annotations are used to generate a non-redundant list of gene-centered 

identifiers, which become the rows of a data matrix filled with integrated expression 

values, obtained averaging the expression levels of the various platform-specific 

probesets/metaprobesets (as shown for expression level of gene X in individual 1). 

After a final normalization step, by quantile distribution transformation, the integrated 

ExpressionSet object is produced. 

 

Additional files 

Additional file 1 – A-MADMAN 1.4 

File name: amadman-1.4.zip 

File format: ZIP 

Title: A-MADMAN 1.4 source code. 

Description: Version 1.4 of A-MADMAN source code. 

Additional file 2 – Supplementary Figure 1 

File name: SupplementalFigure1.jpg 

File format: JPG 

Title: Supplementary Figure 1 
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Description: The role of raw data-to-individuals assignment in the process of 

platforms integration. 

 



Figure 1





Figure 3
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