352 research outputs found

    Ionospheric response to the corotating interaction region-driven geomagnetic storm of October 2002

    Get PDF
    Unlike the geomagnetic storms produced by coronal mass ejections (CMEs), the storms generated by corotating interaction regions (CIRs) are not manifested by dramatic enhancements of the ring current. The CIR-driven storms are however capable of producing other phenomena typical for the magnetic storms such as relativistic particle acceleration, enhanced magnetospheric convection and ionospheric heating. This paper examines ionospheric plasma anomalies produced by a CIR-driven storm in the middle- and high-latitude ionosphere with a specific focus on the polar cap region. The moderate magnetic storm which took place on 14–17 October 2002 has been used as an example of the CIR-driven event. Four-dimensional tomographic reconstructions of the ionospheric plasma density using measurements of the total electron content along ray paths of GPS signals allow us to reveal the large-scale structure of storm-induced ionospheric anomalies. The tomographic reconstructions are compared with the data obtained by digital ionosonde located at Eureka station near the geomagnetic north pole. The morphology and dynamics of the observed ionospheric anomalies is compared qualitatively to the ionospheric anomalies produced by major CME-driven storms. It is demonstrated that the CIR-driven storm of October 2002 was able to produce ionospheric anomalies comparable to those produced by CME-driven storms of much greater Dst magnitude. This study represents an important step in linking the tomographic GPS reconstructions with the data from ground-based network of digital ionosondes

    Future beam experiments in the magnetosphere with plasma contactors: The electron collection and ion emission routes

    Full text link
    Experiments where a high‐voltage electron beam emitted by a spacecraft in the low‐density magnetosphere is used to probe the magnetospheric configuration could greatly enhance our understanding of the near‐Earth environment. Their challenge, however, resides in the fact that the background magnetospheric plasma cannot provide a return current that balances the electron beam current without charging the spacecraft to such high potential that in practice prevents beam emission. In order to overcome this problem, a possible solution is based on the emission of a high‐density contactor plasma by the spacecraft prior to and after the beam. We perform particle‐in‐cell simulations to investigate the conditions under which a high‐voltage electron beam can be emitted from a magnetospheric spacecraft, comparing two possible routes that rely on the high‐density contactor plasma. The first is an “electron collection” route, where the contactor has lower current than the electron beam and is used with the goal of connecting to the background plasma and collecting magnetospheric electrons over a much larger area than that allowed by the spacecraft alone. The second is an “ion emission” route, where the contactor has higher current than the electron beam. Ion emission is then enabled over the large quasi‐spherical area of the contactor cloud, thus overcoming the space charge limits typical of ion beam emission. Our results indicate that the ion emission route offers a pathway for performing beam experiments in the low‐density magnetosphere, while the electron collection route is not viable because the contactor fails to draw a large neutralizing current from the background.Key PointsThe ion emission route is credible for beam experiments in the magnetosphereThe electron collection route is not viableThe background plasma facilitates beam emissionPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111985/1/jgra51700.pd

    The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high‐speed stream‐driven storms

    Full text link
    The outer proton radiation belt (OPRB) and outer electron radiation belt (OERB) at geosynchronous orbit are investigated using a reanalysis of the LANL CPA (Charged Particle Analyzer) 8‐satellite 2‐solar cycle energetic particle data set from 1976 to 1995. Statistics of the OPRB and the OERB are calculated, including local time and solar cycle trends. The number density of the OPRB is about 10 times higher than the OERB, but the 1 MeV proton flux is about 1000 times less than the 1 MeV electron flux because the proton energy spectrum is softer than the electron spectrum. Using a collection of 94 high‐speed stream‐driven storms in 1976–1995, the storm time evolutions of the OPRB and OERB are studied via superposed epoch analysis. The evolution of the OERB shows the familiar sequence (1) prestorm decay of density and flux, (2) early‐storm dropout of density and flux, (3) sudden recovery of density, and (4) steady storm time heating to high fluxes. The evolution of the OPRB shows a sudden enhancement of density and flux early in the storm. The absence of a proton dropout when there is an electron dropout is noted. The sudden recovery of the density of the OERB and the sudden density enhancement of the OPRB are both associated with the occurrence of a substorm during the early stage of the storm when the superdense plasma sheet produces a “strong stretching phase” of the storm. These storm time substorms are seen to inject electrons to 1 MeV and protons to beyond 1 MeV into geosynchronous orbit, directly producing a suddenly enhanced radiation belt population.Key PointsDuring high‐speed stream‐driven storms, the electron and proton radiation belts are directly enhanced by a single substormThe enhancing substorm occurs during the “strong stretching” phase of the storm caused by the superdense plasma sheetProton and electron injection to 1 MeV is seen for these strong stretching phase substormsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133567/1/jgra52702.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133567/2/jgra52702_am.pd

    An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions

    Full text link
    A new empirical model of the electron fluxes and ion fluxes at geosynchronous orbit (GEO) is introduced, based on observations by Los Alamos National Laboratory (LANL) satellites. The model provides flux predictions in the energy range ~1 eV to ~40 keV, as a function of local time, energy, and the strength of the solar wind electric field (the negative product of the solar wind speed and the z component of the magnetic field). Given appropriate upstream solar wind measurements, the model provides a forecast of the fluxes at GEO with a ~1 h lead time. Model predictions are tested against in‐sample observations from LANL satellites and also against out‐of‐sample observations from the Compact Environmental Anomaly Sensor II detector on the AMC‐12 satellite. The model does not reproduce all structure seen in the observations. However, for the intervals studied here (quiet and storm times) the normalized root‐mean‐square deviation < ~0.3. It is intended that the model will improve forecasting of the spacecraft environment at GEO and also provide improved boundary/input conditions for physical models of the magnetosphere.Key PointsNew model of electron and ion fluxes at GEO (driven by ‐vBz) provides a ~1 h forecast of fluxes in the energy range ~1 eV to ~40 keVThe main benefit from the new model is the ability to predict the fluxes at GEO in advanceForecasts are a good match to observations during quiet times and storm timesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134149/1/swe20339_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134149/2/swe20339.pd

    Detailed Calculation of Test-Mass Charging in the LISA Mission

    Full text link
    The electrostatic charging of the LISA test masses due to exposure of the spacecraft to energetic particles in the space environment has implications in the design and operation of the gravitational inertial sensors and can affect the quality of the science data. Robust predictions of charging rates and associated stochastic fluctuations are therefore required for the exposure scenarios expected throughout the mission. We report on detailed charging simulations with the Geant4 toolkit, using comprehensive geometry and physics models, for Galactic cosmic-ray protons and helium nuclei. These predict positive charging rates of 50 +e/s (elementary charges per second) for solar minimum conditions, decreasing by half at solar maximum, and current fluctuations of up to 30 +e/s/Hz^{1/2}. Charging from sporadic solar events involving energetic protons was also investigated. Using an event-size distribution model, we conclude that their impact on the LISA science data is manageable. Several physical processes hitherto unexplored as potential charging mechanisms have also been assessed. Significantly, the kinetic emission of very low-energy secondary electrons due to bombardment of the inertial sensors by primary cosmic rays and their secondaries can produce charging currents comparable with the Monte Carlo rates.Comment: 31 pages, 18 figures, 4 tables. to be published in Astroparticle Physics. Changed due to error found in normalisation of the simulation result

    Perturbed Input Ensemble Modeling With the Space Weather Modeling Framework

    Full text link
    To assess the effect of uncertainties in solar wind driving on the predictions from the operational configuration of the Space Weather Modeling Framework, we have developed a nonparametric method for generating multiple possible realizations of the solar wind just upstream of the bow shock, based on observations near the first Lagrangian point. We have applied this method to the solar wind inputs at the upstream boundary of Space Weather Modeling Framework and have simulated the geomagnetic storm of 5 April 2010. We ran a 40‐member ensemble for this event and have used this ensemble to quantify the uncertainty in the predicted Sym‐H index and ground magnetic disturbances due to the uncertainty in the upstream boundary conditions. Both the ensemble mean and the unperturbed simulation tend to underpredict the magnitude of Sym‐H in the quiet interval before the storm and overpredict in the storm itself, consistent with previous work. The ensemble mean is a more accurate predictor of Sym‐H, improving the mean absolute error by nearly 2 nT for this interval and displaying a smaller bias. We also examine the uncertainty in predicted maxima in ground magnetic disturbances. The confidence intervals are typically narrow during periods where the predicted dBH/dt is low. The confidence intervals are often much wider where the median prediction is for enhanced dBH/dt. The ensemble also allows us to identify intervals of activity that cannot be explained by uncertainty in the solar wind driver, driving further model improvements. This work demonstrates the feasibility and importance of ensemble modeling for space weather applications.Plain Language SummaryForecasts of space weather usually rely on spacecraft measurements of the solar wind from about a million miles away from Earth. Like water flowing toward a rock in a stream, measurements at a single point upstream may not reflect exactly what will hit the Earth. Forecasts that are driven by these measurements have uncertainty due to the uncertainty in the measurements driving the forecast models. We have developed a technique to estimate the uncertainty on space weather predictions using 7 years of solar wind measurements from two satellites. We have performed computer simulations of the same geomagnetic storm 41 times. In each simulation, the inputs were modified slightly each time to reflect the uncertainty in the measurements. By considering the set of simulations as a whole, we have shown that space weather forecasts can be improved by accounting for the uncertainty in the input data. We have also shown that accounting for uncertainty in the data driving, the model can highlight where incorrect forecasts are due to the uncertainty, as well as where they are due to inadequacies in the model itself. This work shows the importance of ensemble methods and accounting for uncertainties in space weather simulation and forecasting.Key PointsA new nonparametric method for drawing different realizations of solar wind data to drive magnetospheric models is derivedThe new method is used to obtain uncertainties on predicted geophysical indices from the operational Space Weather Modeling FrameworkModel skill can be improved by considering the uncertainty on model inputPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146472/1/swe20747_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146472/2/swe20747.pd

    Adsorption of benzene on Si(100) from first principles

    Full text link
    Adsorption of benzene on the Si(100) surface is studied from first principles. We find that the most stable configuration is a tetra-σ\sigma-bonded structure characterized by one C-C double bond and four C-Si bonds. A similar structure, obtained by rotating the benzene molecule by 90 degrees, lies slightly higher in energy. However, rather narrow wells on the potential energy surface characterize these adsorption configurations. A benzene molecule impinging on the Si surface is most likely to be adsorbed in one of three different di-σ\sigma-bonded, metastable structures, characterized by two C-Si bonds, and eventually converts into the lowest-energy configurations. These results are consistent with recent experiments.Comment: 4 pages, RevTex, 2 PostScript gzipped figure
    • 

    corecore