2,206 research outputs found

    Dark spinor models in gravitation and cosmology

    Get PDF
    We introduce and carefully define an entire class of field theories based on non-standard spinors. Their dominant interaction is via the gravitational field which makes them naturally dark; we refer to them as Dark Spinors. We provide a critical analysis of previous proposals for dark spinors noting that they violate Lorentz invariance. As a working assumption we restrict our analysis to non-standard spinors which preserve Lorentz invariance, whilst being non-local and explicitly construct such a theory. We construct the complete energy-momentum tensor and derive its components explicitly by assuming a specific projection operator. It is natural to next consider dark spinors in a cosmological setting. We find various interesting solutions where the spinor field leads to slow roll and fast roll de Sitter solutions. We also analyse models where the spinor is coupled conformally to gravity, and consider the perturbations and stability of the spinor.Comment: 43 pages. Several new sections and details added. JHEP in prin

    Zero Energy of Plane-Waves for ELKOs

    Full text link
    We consider the ELKO field in interaction through contorsion with its own spin density, and we investigate the form of the consequent autointeractions; to do so we take into account the high-density limit and find plane wave solutions: such plane waves give rise to contorsional autointeractions for which the Ricci metric curvature vanishes and therefore the energy density is equal to zero identically. Consequences are discussed.Comment: 7 page

    The stability of Einstein static universe in the DGP braneworld

    Full text link
    The stability of an Einstein static universe in the DGP braneworld scenario is studied in this paper. Two separate branches denoted by ϵ=±1\epsilon=\pm1 of the DGP model are analyzed. Assuming the existence of a perfect fluid with a constant equation of state, ww, in the universe, we find that, for the branch with ϵ=1\epsilon=1, there is no a stable Einstein static solution, while, for the case with ϵ=1\epsilon=-1, the Einstein static universe exists and it is stable when 1<w<1/3-1<w<-1/3. Thus, the universe can stay at this stable state past-eternally and may undergo a series of infinite, non-singular oscillations. Therefore, the big bang singularity problem in the standard cosmological model can be resolved.Comment: 10 pages, 2 figures, to appear in PL

    Space-time evolution induced by spinor fields with canonical and non-canonical kinetic terms

    Full text link
    We study spinor field theories as an origin to induce space-time evolution. Self-interacting spinor fields with canonical and non-canonical kinetic terms are considered in a Friedman-Robertson-Walker universe. The deceleration parameter is calculated by solving the equation of motion and the Friedman equation, simultaneously. It is shown that the spinor fields can accelerate and decelerate the universe expansion. To construct realistic models we discuss the contributions from the dynamical symmetry breaking.Comment: 16 pages, 19 figure

    Palatini formulation of modified gravity with a nonminimal curvature-matter coupling

    Get PDF
    We derive the field equations and the equations of motion for massive test particles in modified theories of gravity with an arbitrary coupling between geometry and matter by using the Palatini formalism. We show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary, matter Lagrangian dependent metric, which is related with the physical metric by means of a conformal transformation. Similarly to the metric case, the field equations impose the non-conservation of the energy-momentum tensor. We derive the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra-force is obtained in terms of the matter-geometry coupling functions and of their derivatives. Generally, the motion is non-geodesic, and the extra force is orthogonal to the four-velocity.Comment: 7 pages, no figures; v2, revised and corrected version; new Section adde

    Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe2As2

    Full text link
    Using resistivity, heat-capacity, thermal-expansion, and susceptibility measurements we study the normal-state behavior of KFe2As2. We find that both the Sommerfeld coefficient gamma = 103 mJ mol-1 K-2 and the Pauli susceptibility chi = 4x10-4 are strongly enhanced, which confirm the existence of heavy quasiparticles inferred from previous de Haas-van Alphen and ARPES experiments. We discuss this large enhancement using a Gutzwiller slave-boson mean-field calculation, which reveals the proximity of KFe2As2 to an orbital-selective Mott transition. The temperature dependence of the magnetic susceptibility and the thermal expansion provide strong experimental evidence for the existence of a coherence-incoherence crossover, similar to what is found in heavy fermion and ruthenate compounds, due to Hund's coupling between orbitals

    Very special relativity as relativity of dark matter: the Elko connection

    Get PDF
    In the very special relativity (VSR) proposal by Cohen and Glashow, it was pointed out that invariance under HOM(2) is both necessary and sufficient to explain the null result of the Michelson-Morely experiment. It is the quantum field theoretic demand of locality, or the requirement of P, T, CP, or CT invariance, that makes invariance under the Lorentz group a necessity. Originally it was conjectured that VSR operates at the Planck scale; we propose that the natural arena for VSR is at energies similar to the standard model, but in the dark sector. To this end we provide an ab initio spinor representation invariant under the SIM(2) avatar of VSR and construct a mass dimension one fermionic quantum field of spin one half. This field turns out to be a very close sibling of Elko and it exhibits the same striking property of intrinsic darkness with respect to the standard model fields. In the new construct, the tension between Elko and Lorentz symmetries is fully resolved. We thus entertain the possibility that the symmetries underlying the standard model matter and gauge fields are those of Lorentz, while the event space underlying the dark matter and the dark gauge fields supports the algebraic structure underlying VSR.Comment: 19 pages. Section 5 is new. Published version (modulo a footnote, and a corrected typo

    Phenomenological covariant approach to gravity

    Full text link
    We covariantly modify the Einstein-Hilbert action such that the modified action perturbatively resolves the flat rotational velocity curve of the spiral galaxies and gives rise to the Tully-Fisher relation, and dynamically generates the cosmological constant. This modification requires introducing just a single new universal parameter.Comment: v6: a mistake in deriving the equation of the cosmological constant corrected, refs adde

    Upstream-binding factor is sequestered into herpes simplex virus type 1 replication compartments

    Get PDF
    Previous reports have shown that adenovirus recruits nucleolar protein upstream-binding factor (UBF) into adenovirus DNA replication centres. Here, we report that despite having a different mode of viral DNA replication, herpes simplex virus type 1 (HSV-1) also recruits UBF into viral DNA replication centres. Moreover, as with adenovirus, enhanced green fluorescent protein-tagged fusion proteins of UBF inhibit viral DNA replication. We propose that UBF is recruited to the replication compartments to aid replication of HSV-1 DNA. In addition, this is a further example of the role of nucleolar components in viral life cycle
    corecore