2,068 research outputs found

    Interaction Picture Density Matrix Quantum Monte Carlo

    Get PDF
    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N -body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.Comment: Minor text modifications and added deviation subplot to Fig. 9 following referee's review comments. Include link to supplementary material in reference

    Accurate exchange-correlation energies for the warm dense electron gas

    Get PDF
    Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average NN-body density matrices for uniform electron gas systems of up to 10124^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the kk-space configuration path-integral formalism disagree by up to \sim1010\% at certain reduced temperatures T/TF0.5T/T_F \le 0.5 and densities rs1r_s \le 1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that DMQMC can calculate free energies directly and present exact free energies for T/TF1T/T_F \ge 1 and rs2r_s \le 2.Comment: Accepted version: added free energy data and restructured text. Now includes supplementary materia

    Simulating temporal evolution of pressure in two-phase flow in porous media

    Get PDF
    We have simulated the temporal evolution of pressure due to capillary and viscous forces in two-phase drainage in porous media. We analyze our result in light of macroscopic flow equations for two-phase flow. We also investigate the effect of the trapped clusters on the pressure evolution and on the effective permeability of the system. We find that the capillary forces play an important role during the displacements for both fast and slow injection rates and both when the invading fluid is more or less viscous than the defending fluid. The simulations are based on a network simulator modeling two-phase drainage displacements on a two-dimensional lattice of tubes.Comment: 12 pages, LaTeX, 14 figures, Postscrip

    Macroscopic Equations of Motion for Two Phase Flow in Porous Media

    Full text link
    The established macroscopic equations of motion for two phase immiscible displacement in porous media are known to be physically incomplete because they do not contain the surface tension and surface areas governing capillary phenomena. Therefore a more general system of macroscopic equations is derived here which incorporates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach which exhibit a complex dependence on the state variables. A capillary pressure function can be identified in equilibrium which shows the qualitative saturation dependence known from experiment. In addition the new equations allow to describe the spatiotemporal changes of residual saturations during immiscible displacement.Comment: 15 pages, Phys. Rev. E (1998), in prin

    Open-source development experiences in scientific software: the HANDE quantum Monte Carlo project

    Full text link
    The HANDE quantum Monte Carlo project offers accessible stochastic algorithms for general use for scientists in the field of quantum chemistry. HANDE is an ambitious and general high-performance code developed by a geographically-dispersed team with a variety of backgrounds in computational science. In the course of preparing a public, open-source release, we have taken this opportunity to step back and look at what we have done and what we hope to do in the future. We pay particular attention to development processes, the approach taken to train students joining the project, and how a flat hierarchical structure aids communicationComment: 6 pages. Submission to WSSSPE
    corecore