374 research outputs found
Representation of hydrological processes in a rural lowland catchment in Northern Germany using SWAT and SWAT+
The latest version of the Soil and Water Assessment Tool (SWAT+) features several improvements compared with previous versions of the model, for example, the definition of landscape units that allow for a better representation of spatio-temporal dynamics. To evaluate the new model capabilities in lowland catchments characterized by near-surface groundwater tables and extensive tile drainage, we assess the performance of two SWAT+ model setups in comparison to a setup based on a previous SWAT model version (SWAT3S with a modified three groundwater storage model) in the Kielstau catchment in Northern Germany. The Kielstau catchment has an area of about 50 km2, is dominated by agricultural land use, and has been thoroughly monitored since 2005. In both SWAT+ setups, the catchment is divided into upland areas and floodplains, but in the first SWAT+ model setup, runoff from the hydrologic response units is summed up at landscape unit level and added directly to the stream. In the second SWAT+ model setup, runoff is routed across the landscape before it reaches the streams. Model results are compared with regard to (i) model performance for stream flow at the outlet of the catchment and (ii) aggregated as well as temporally and spatially distributed water balance components. All three model setups show a very good performance at the catchment outlet. In comparison to a previous version of the SWAT model that produced more groundwater flow, the SWAT+ model produced more tile drainage flow and surface runoff. Results from the new SWAT+ model confirm that the representation of routing processes from uplands to floodplains in the model further improved the representation of hydrological processes. Particularly, the stronger spatial heterogeneity that can be related to characteristics of the landscape, is very promising for a better understanding and model representation of hydrological fluxes in lowland areas
Analysis of the impact of length of stay on the quality of service experience, satisfaction and loyalty
Although length of stay is a relevant variable in destination management, little research has been produced connecting it with tourists' post-consumption behaviour. This research compares the post-consumption behaviour of same-day visitors with overnight tourists in a sample of 398 domestic vacationers at two Mediterranean heritage-and-beach destinations. Although economic research on length of stay posits that there are destination benefits in longer stays, same-day visitors score higher in most of the post-consumption variables under study. Significant differences arise in hedonic aspects of the tourist experience and destination loyalty. Thus, we propose that length of stay can be used as a segmentation variable. Furthermore, destination management organisations need to consider length of stay when designing tourism policies. The tourist product and communication strategies might be adapted to different vacation durations
Development of a Landscape Unit Delineation Framework to assess Water Transfers across Landscape Units using SWAT
Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil
ARES. III. Unveiling the Two Faces of KELT-7 b with HST WFC3*
We present the analysis of the hot-Jupiter KELT-7 b using transmission and emission spectroscopy from the Hubble Space Telescope, both taken with the Wide Field Camera 3. Our study uncovers a rich transmission spectrum that is consistent with a cloud-free atmosphere and suggests the presence of H_{2}O and H^{−}. In contrast, the extracted emission spectrum does not contain strong absorption features and, although it is not consistent with a simple blackbody, it can be explained by a varying temperature–pressure profile, collision induced absorption, and H^{-}. KELT-7 b had also been studied with other space-based instruments and we explore the effects of introducing these additional data sets. Further observations with Hubble, or the next generation of space-based telescopes, are needed to allow for the optical opacity source in transmission to be confirmed and for molecular features to be disentangled in emission
Single-cell analysis reveals individual spore responses to simulated space vacuum
Outer space is a challenging environment for all forms of life, and dormant spores of bacteria have been frequently used to study the survival of terrestrial life in a space journey. Previous work showed that outer space vacuum alone can kill bacterial spores. However, the responses and mechanisms of resistance of individual spores to space vacuum are unclear. Here, we examined spores’ molecular changes under simulated space vacuum (~10−5 Pa) using micro-Raman spectroscopy and found that this vacuum did not cause significant denaturation of spore protein. Then, live-cell microscopy was developed to investigate the temporal events during germination, outgrowth, and growth of individual Bacillus spores. The results showed that after exposure to simulated space vacuum for 10 days, viability of spores of two Bacillus species was reduced up to 35%, but all spores retained their large Ca2 +-dipicolinic acid depot. Some of the killed spores did not germinate, and the remaining germinated but did not proceed to vegetative growth. The vacuum treatment slowed spore germination, and changed average times of all major germination events. In addition, viable vacuum-treated spores exhibited much greater sensitivity than untreated spores to dry heat and hyperosmotic stress. Among spores’ resistance mechanisms to high vacuum, DNA-protective α/β−type small acid-soluble proteins, and non- homologous end joining and base excision repair of DNA played the most important roles, especially against multiple cycles of vacuum treatment. Overall, these results give new insight into individual spore’s responses to space vacuum and provide new techniques for microorganism analysis at the single-cell level
Characterizing a World Within the Hot-Neptune Desert: Transit Observations of LTT 9779 b with the Hubble Space Telescope/WFC3
We present an atmospheric analysis of LTT 9779 b, a rare planet situated in the hot-Neptune desert, that has been observed with Hubble Space Telescope (HST)/WFC3 with G102 and G141. The combined transmission spectrum, which covers 0.8–1.6 μm, shows a gradual increase in transit depth with wavelength. Our preferred atmospheric model shows evidence for H2O, CO2, and FeH with a significance of 3.1σ, 2.4σ, and 2.1σ, respectively. In an attempt to constrain the rate of atmospheric escape for this planet, we search for the 1.083 μm helium line in the G102 data but find no evidence of excess absorption that would indicate an escaping atmosphere using this tracer. We refine the orbital ephemerides of LTT 9779 b using our HST data and observations from TESS, searching for evidence of orbital decay or apsidal precession, which are not found. The phase-curve observation of LTT 9779 b with JWST NIRISS should provide deeper insights into the atmosphere of this planet and the expected atmospheric escape might be detected with further observations concentrated on other tracers such as Lyα
Characterising a World Within the Hot Neptune Desert: Transit Observations of LTT 9779 b with HST WFC3
We present an atmospheric analysis of LTT 9779 b, a rare planet situated in
the hot Neptune desert, that has been observed with HST WFC3 G102 and G141. The
combined transmission spectrum, which covers 0.8 - 1.6 m, shows a gradual
increase in transit depth with wavelength. Our preferred atmospheric model
shows evidence for HO, CO and FeH with a significance of
3.1 , 2.4 and 2.1 , respectively. In an attempt to
constrain the rate of atmospheric escape for this planet, we search for the
1.083 m Helium line in the G102 data but find no evidence of excess
absorption that would indicate an escaping atmosphere using this tracer. We
refine the orbital ephemerides of LTT 9779 b using our HST data and
observations from TESS, searching for evidence of orbital decay or apsidal
precession, which is not found. The phase-curve observation of LTT 9779 b with
JWST NIRISS should provide deeper insights into the atmosphere of this planet
and the expected atmospheric escape might be detected with further observations
concentrated on other tracers such as Lyman .Comment: Accepted for publication in A
Structural Basis for the Aminoacid Composition of Proteins from Halophilic Archea
In order to survive in highly saline environments, proteins from halophilic archea have evolved with biased amino acid compositions that have the capacity to reduce contacts with the solvent
- …
