133 research outputs found
On the Zipf strategy for short-term investments in WIG20 futures
We apply the Zipf power law to financial time series of WIG20 index daily
changes (open-close). Thanks to the mapping of time series signal into the
sequence of 2k+1 'spin-like' states, where k=0, 1/2, 1, 3/2, ..., we are able
to describe any time series increments, with almost arbitrary accuracy, as the
one of such 'spin-like' states. This procedure leads in the simplest
non-trivial case (k = 1/2) to the binary data projection. More sophisticated
projections are also possible and mentioned in the article. The introduced
formalism allows then to use Zipf power law to describe the intrinsic structure
of time series. The fast algorithm for this implementation was constructed by
us within Matlab^{TM} software. The method, called Zipf strategy, is then
applied in the simplest case k = 1/2 to WIG 20 open and close daily data to
make short-term predictions for forthcoming index changes. The results of
forecast effectiveness are presented with respect to different time window
sizes and partition divisions (word lengths in Zipf language). Finally, the
various investment strategies improving ROI (return of investment) for WIG20
futures are proposed. We show that the Zipf strategy is the appropriate and
very effective tool to make short-term predictions and therefore, to evaluate
short-term investments on the basis of historical stock index data. Our
findings support also the existence of long memory in financial data, exceeding
the known in literature 3 days span limit.Comment: 13 pages, 6 figures, 1 table, presented at the 5-th FENS symposium on
Physics in Economic and Social Systems, Warsaw 201
Absence of the suprarenal segment of the inferior vena cava with a coexisting absence of the right brachiocephalic vein in a 22-year-old Caucasian male with arterial hypertension
Congenital anomalies of the inferior vena cava (IVC) are rarely observed malformations of the venous system, occurring in 0.3% of otherwise healthy individuals, and in 0.6% to 2% of patients with coexisting cardiovascular defects. They are usually asymptomatic and recognised incidentally during imaging, operations or dissection studies. In this paper we report an extremely rare case of a 22-year-old Caucasian male, admitted for the purpose of excluding secondary causes of hypertension. During imaging of the abdomen and the thorax we found a complete lack of the suprarenal segment of the IVC, with a coexisting absence of the right brachiocephalic vein. We discuss the problem of congenital defects of the IVC and we review the relevant literature
Mutation in Folate Metabolism Causes Epigenetic Instability and Transgenerational Effects on Development
SummaryThe importance of maternal folate consumption for normal development is well established, yet the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (Mtrr) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay, and congenital malformations, including neural tube, heart, and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wild-type grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed that Mtrr deficiency in mice lead to two distinct, separable phenotypes: adverse effects on their wild-type daughters’ uterine environment, leading to growth defects in wild-type grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance.PaperFlic
In-situ formation of Ag nanoparticles in the MAO coating during the processing of cp-Ti
Silver nanoparticle (Ag-NP) containing antibacterial micro-arc oxidation (MAO) coatings have already been synthesized over titanium-based materials via the MAO process employed in silver acetate (AgC2H3O2) containing electrolyte. However, the way of incorporation and in-situ formation of Ag-NPs within the MAO coating have not been documented yet. Present work was initiated to reveal the mechanism of Ag-NP formation within the MAO coatings. Thus, the structure of the MAO coating fabricated on commercial purity titanium in the AgC2H3O2-containing electrolyte was investigated by electron microscopy techniques. To this end, the cross-sectional high-resolution electron microscopy studies were carried out on lamella cut out with the focused ion beam technique, and these investigations were backed by X-ray photoelectron spectroscopy measurements of chemical composition on the surface of the MAO coating. These studies revealed that Ag is dispersed in the form of nanoparticles throughout the coating and that a higher density was confirmed closer to the micro-pores
Combined T2 and diffusion-weighted MR Imaging with template prostate biopsies in men suspected with prostate cancer but negative transrectal ultrasound-guided biopsies
PURPOSE: Transperineal template prostate (TPB) biopsy has been shown to improve prostate cancer detection in men with rising PSA and previous negative TRUS biopsies. Diagnostic performance of this approach especially MR imaging and using reliable reference standard remains scantly reported. MATERIALS AND METHODS: A total of 200 patients, who were previously TRUS biopsy negative, were recruited in this study. All the participants had at least 28-core TPB under general anesthetic within 8 weeks of previous negative TRUS biopsies. In 15 men undergoing laparoscopic radical prostatectomy, prostate specimens were sectioned using custom-made molds and analyzed by experienced pathologist as a feasibility study. RESULTS: In total, 120 of 200 patients (60 %) had positive TPB biopsy results. All of these men had at least one negative biopsy from transrectal route. T2 diffusion-weighted MR imaging showed no lesion in almost one-third of these men (61/200; 30.5 %). Out of these, 33 (33/61; 54 %) showed malignancy on TPB including high-grade tumors (>Gleason 7). Out of 15 patients underwent surgery with a total of 52 lesions (mean 3.5) on radical prostatectomy histology analyses, TPB detected 36 (70 %) lesions only. Some of these lesions were Gleason 7 and more mostly located in the posterior basal area of prostate. CONCLUSIONS: Transperineal template biopsy technique is associated with significantly high prostate cancer detection rate in men with previous negative TRUS biopsies, however compared to radical prostatectomy histology map, a significant number of lesions can still be missed in the posterior and basal area of prostate
The RIP140 Gene Is a Transcriptional Target of E2F1
RIP140 is a transcriptional coregulator involved in energy homeostasis and ovulation which is controlled at the transcriptional level by several nuclear receptors. We demonstrate here that RIP140 is a novel target gene of the E2F1 transcription factor. Bioinformatics analysis, gel shift assay, and chromatin immunoprecipitation demonstrate that the RIP140 promoter contains bona fide E2F response elements. In transiently transfected MCF-7 breast cancer cells, the RIP140 promoter is transactivated by overexpression of E2F1/DP1. Interestingly, RIP140 mRNA is finely regulated during cell cycle progression (5-fold increase at the G1/S and G2/M transitions). The positive regulation by E2F1 requires sequences located in the proximal region of the promoter (−73/+167), involves Sp1 transcription factors, and undergoes a negative feedback control by RIP140. Finally, we show that E2F1 participates in the induction of RIP140 expression during adipocyte differentiation. Altogether, this work identifies the RIP140 gene as a new transcriptional target of E2F1 which may explain some of the effect of E2F1 in both cancer and metabolic diseases
ZNF274 Recruits the Histone Methyltransferase SETDB1 to the 3′ Ends of ZNF Genes
Only a small percentage of human transcription factors (e.g. those associated with a specific differentiation program) are expressed in a given cell type. Thus, cell fate is mainly determined by cell type-specific silencing of transcription factors that drive different cellular lineages. Several histone modifications have been associated with gene silencing, including H3K27me3 and H3K9me3. We have previously shown that genes for the two largest classes of mammalian transcription factors are marked by distinct histone modifications; homeobox genes are marked by H3K27me3 and zinc finger genes are marked by H3K9me3. Several histone methyltransferases (e.g. G9a and SETDB1) may be involved in mediating the H3K9me3 silencing mark. We have used ChIP-chip and ChIP-seq to demonstrate that SETDB1, but not G9a, is associated with regions of the genome enriched for H3K9me3. One current model is that SETDB1 is recruited to specific genomic locations via interaction with the corepressor TRIM28 (KAP1), which is in turn recruited to the genome via interaction with zinc finger transcription factors that contain a Kruppel-associated box (KRAB) domain. However, specific KRAB-ZNFs that recruit TRIM28 (KAP1) and SETDB1 to the genome have not been identified. We now show that ZNF274 (a KRAB-ZNF that contains 5 C2H2 zinc finger domains), can interact with KAP1 both in vivo and in vitro and, using ChIP-seq, we show that ZNF274 binding sites co-localize with SETDB1, KAP1, and H3K9me3 at the 3′ ends of zinc finger genes. Knockdown of ZNF274 with siRNAs reduced the levels of KAP1 and SETDB1 recruitment to the binding sites. These studies provide the first identification of a KRAB domain-containing ZNF that is involved in recruitment of the KAP1 and SETDB1 to specific regions of the human genome
Ganglion Cell Adaptability: Does the Coupling of Horizontal Cells Play a Role?
Background: The visual system can adjust itself to different visual environments. One of the most well known examples of this is the shift in spatial tuning that occurs in retinal ganglion cells with the change from night to day vision. This shift is thought to be produced by a change in the ganglion cell receptive field surround, mediated by a decrease in the coupling of horizontal cells. Methodology/Principal Findings: To test this hypothesis, we used a transgenic mouse line, a connexin57-deficient line, in which horizontal cell coupling was abolished. Measurements, both at the ganglion cell level and the level of behavioral performance, showed no differences between wild-type retinas and retinas with decoupled horizontal cells from connexin57-deficient mice. Conclusion/Significance: This analysis showed that the coupling and uncoupling of horizontal cells does not play a dominant role in spatial tuning and its adjustability to night and day light conditions. Instead, our data suggest that anothe
Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development
Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6–0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription factor binding may be used to predict the binding landscape of any animal transcription factor with significant precision
Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets
The most widely used method for detecting genome-wide protein–DNA interactions is chromatin immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective analysis of tiling array platforms, amplification procedures, and signal detection algorithms in a simulated ChIP-chip experiment. Mixtures of human genomic DNA and “spike-ins” comprised of nearly 100 human sequences at various concentrations were hybridized to four tiling array platforms by eight independent groups. Blind to the number of spike-ins, their locations, and the range of concentrations, each group made predictions of the spike-in locations. We found that microarray platform choice is not the primary determinant of overall performance. In fact, variation in performance between labs, protocols, and algorithms within the same array platform was greater than the variation in performance between array platforms. However, each array platform had unique performance characteristics that varied with tiling resolution and the number of replicates, which have implications for cost versus detection power. Long oligonucleotide arrays were slightly more sensitive at detecting very low enrichment. On all platforms, simple sequence repeats and genome redundancy tended to result in false positives. LM-PCR and WGA, the most popular sample amplification techniques, reproduced relative enrichment levels with high fidelity. Performance among signal detection algorithms was heavily dependent on array platform. The spike-in DNA samples and the data presented here provide a stable benchmark against which future ChIP platforms, protocol improvements, and analysis methods can be evaluated
- …