2,891 research outputs found
Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery
Background: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have the maximum predictive power has the potential to reduce phenotyping efforts. The objective of this study was to select principal features extracted from UAV imagery and critical growth stages that contributed the most in explaining winter wheat grain yield. Five dates of multispectral images and seven dates of RGB images were collected by a UAV system during the spring growing season in 2018. Two classes of features (variables), totaling to 172 variables, were extracted for each plot from the vegetation index and plant height maps, including pixel statistics and dynamic growth rates. A parametric algorithm, LASSO regression (the least angle and shrinkage selection operator), and a non-parametric algorithm, random forest, were applied for variable selection. The regression coefficients estimated by LASSO and the permutation importance scores provided by random forest were used to determine the ten most important variables influencing grain yield from each algorithm.
Results: Both selection algorithms assigned the highest importance score to the variables related with plant height around the grain filling stage. Some vegetation indices related variables were also selected by the algorithms mainly at earlier to mid growth stages and during the senescence. Compared with the yield prediction using all 172 variables derived from measured phenotypes, using the selected variables performed comparable or even better. We also noticed that the prediction accuracy on the adapted NE lines (r = 0.58–0.81) was higher than the other lines (r = 0.21–0.59) included in this study with different genetic backgrounds.
Conclusions: With the ultra-high resolution plot imagery obtained by the UAS-based phenotyping we are now able to derive more features, such as the variation of plant height or vegetation indices within a plot other than just an averaged number, that are potentially very useful for the breeding purpose. However, too many features or variables can be derived in this way. The promising results from this study suggests that the selected set from those variables can have comparable prediction accuracies on the grain yield prediction than the full set of them but possibly resulting in a better allocation of efforts and resources on phenotypic data collection and processing
Oxidation mechanism in metal nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters
Zn nanoclusters (NCs) are deposited by Low-energy cluster beam deposition
technique. The mechanism of oxidation is studied by analysing their
compositional and morphological evolution over a long span of time (three
years) due to exposure to ambient atmosphere. It is concluded that the
mechanism proceeds in two steps. In the first step, the shell of ZnO forms over
Zn NCs rapidly up to certain limiting thickness: with in few days -- depending
upon the size -- Zn NCs are converted to Zn-ZnO (core-shell), Zn-void-ZnO, or
hollow ZnO type NCs. Bigger than ~15 nm become Zn-ZnO (core-shell) type: among
them, NCs above ~25 nm could able to retain their initial geometrical shapes
(namely triangular, hexagonal, rectangular and rhombohedral), but ~25 to 15 nm
size NCs become irregular or distorted geometrical shapes. NCs between ~15 to 5
nm become Zn-void-ZnO type, and smaller than ~5 nm become ZnO hollow sphere
type i.e. ZnO hollow NCs. In the second step, all Zn-void-ZnO and Zn-ZnO
(core-shell) structures are converted to hollow ZnO NCs in a slow and gradual
process, and the mechanism of conversion proceeds through expansion in size by
incorporating ZnO monomers inside the shell. The observed oxidation behaviour
of NCs is compared with theory of Cabrera - Mott on low-temperature oxidation
of metal.Comment: 9 pages, 8 figure
Signatures of the disk-jet coupling in the Broad-line Radio Quasar 4C+74.26
Here we explore the disk-jet connection in the broad-line radio quasar
4C+74.26, utilizing the results of the multiwavelength monitoring of the
source. The target is unique in that its radiative output at radio wavelengths
is dominated by a moderately-beamed nuclear jet, at optical frequencies by the
accretion disk, and in the hard X-ray range by the disk corona. Our analysis
reveals a correlation (local and global significance of 96\% and 98\%,
respectively) between the optical and radio bands, with the disk lagging behind
the jet by days. We discuss the possible explanation for this,
speculating that the observed disk and the jet flux changes are generated by
magnetic fluctuations originating within the innermost parts of a truncated
disk, and that the lag is related to a delayed radiative response of the disk
when compared with the propagation timescale of magnetic perturbations along
relativistic outflow. This scenario is supported by the re-analysis of the
NuSTAR data, modelled in terms of a relativistic reflection from the disk
illuminated by the coronal emission, which returns the inner disk radius
. We discuss the global energetics in
the system, arguing that while the accretion proceeds at the Eddington rate,
with the accretion-related bolometric luminosity erg s , the jet total kinetic energy
erg s, inferred from the dynamical
modelling of the giant radio lobes in the source, constitutes only a small
fraction of the available accretion power.Comment: 9 pages and 6 figures, ApJ accepte
Implementing "mutually supportive" access and benefit sharing mechanisms under the Plant Treaty, Convention on Biological Diversity, and Nagoya Protocol
Multifrequency Photo-polarimetric WEBT Observation Campaign on the Blazar S5 0716+714: Source Microvariability and Search for Characteristic Timescales
Here we report on the results of the WEBT photo-polarimetric campaign
targeting the blazar S5~0716+71, organized in March 2014 to monitor the source
simultaneously in BVRI and near IR filters. The campaign resulted in an
unprecedented dataset spanning \,h of nearly continuous, multi-band
observations, including two sets of densely sampled polarimetric data mainly in
R filter. During the campaign, the source displayed pronounced variability with
peak-to-peak variations of about and "bluer-when-brighter" spectral
evolution, consisting of a day-timescale modulation with superimposed hourlong
microflares characterized by \,mag flux changes. We performed an
in-depth search for quasi-periodicities in the source light curve; hints for
the presence of oscillations on timescales of \,h and \,h do
not represent highly significant departures from a pure red-noise power
spectrum. We observed that, at a certain configuration of the optical
polarization angle relative to the positional angle of the innermost radio jet
in the source, changes in the polarization degree led the total flux
variability by about 2\,h; meanwhile, when the relative configuration of the
polarization and jet angles altered, no such lag could be noted. The
microflaring events, when analyzed as separate pulse emission components, were
found to be characterized by a very high polarization degree () and
polarization angles which differed substantially from the polarization angle of
the underlying background component, or from the radio jet positional angle. We
discuss the results in the general context of blazar emission and energy
dissipation models.Comment: 16 pages, 17 Figures; ApJ accepte
The 72-Hour WEBT Microvariability Observation of Blazar S5 0716+714 in 2009
Context. The international whole earth blazar telescope (WEBT) consortium
planned and carried out three days of intensive micro-variability observations
of S5 0716+714 from February 22, 2009 to February 25, 2009. This object was
chosen due to its bright apparent magnitude range, its high declination, and
its very large duty cycle for micro-variations. Aims. We report here on the
long continuous optical micro-variability light curve of 0716+714 obtained
during the multi-site observing campaign during which the Blazar showed almost
constant variability over a 0.5 magnitude range. The resulting light curve is
presented here for the first time. Observations from participating
observatories were corrected for instrumental differences and combined to
construct the overall smoothed light curve. Methods. Thirty-six observatories
in sixteen countries participated in this continuous monitoring program and
twenty of them submitted data for compilation into a continuous light curve.
The light curve was analyzed using several techniques including Fourier
transform, Wavelet and noise analysis techniques. Those results led us to model
the light curve by attributing the variations to a series of synchrotron
pulses. Results. We have interpreted the observed microvariations in this
extended light curve in terms of a new model consisting of individual
stochastic pulses due to cells in a turbulent jet which are energized by a
passing shock and cool by means of synchrotron emission. We obtained an
excellent fit to the 72-hour light curve with the synchrotron pulse model
- …
