880 research outputs found
Some constructions of almost para-hyperhermitian structures on manifolds and tangent bundles
In this paper we give some examples of almost para-hyperhermitian structures
on the tangent bundle of an almost product manifold, on the product manifold
, where is a manifold endowed with a mixed 3-structure
and on the circle bundle over a manifold with a mixed 3-structure.Comment: 10 pages; This paper has been presented in the "4th German-Romanian
Seminar on Geometry" Dortmund, Germany, 15-18 July 200
Role of transport performance on neuron cell morphology
The compartmental model is a basic tool for studying signal propagation in
neurons, and, if the model parameters are adequately defined, it can also be of
help in the study of electrical or fluid transport. Here we show that the input
resistance, in different networks which simulate the passive properties of
neurons, is the result of an interplay between the relevant conductances,
morphology and size. These results suggest that neurons must grow in such a way
that facilitates the current flow. We propose that power consumption is an
important factor by which neurons attain their final morphological appearance.Comment: 9 pages with 3 figures, submitted to Neuroscience Letter
Natural Diagonal Riemannian Almost Product and Para-Hermitian Cotangent Bundles
We obtain the natural diagonal almost product and locally product structures
on the total space of the cotangent bundle of a Riemannian manifold. We find
the Riemannian almost product (locally product) and the (almost) para-Hermitian
cotangent bundles of natural diagonal lift type. We prove the characterization
theorem for the natural diagonal (almost) para-K\"ahlerian structures on the
total spaces of the cotangent bundle.Comment: 10 pages, will appear in Czechoslovak Mathematical Journa
Performance of discrete heat engines and heat pumps in finite time
The performance in finite time of a discrete heat engine with internal
friction is analyzed. The working fluid of the engine is composed of an
ensemble of noninteracting two level systems. External work is applied by
changing the external field and thus the internal energy levels. The friction
induces a minimal cycle time. The power output of the engine is optimized with
respect to time allocation between the contact time with the hot and cold baths
as well as the adiabats. The engine's performance is also optimized with
respect to the external fields. By reversing the cycle of operation a heat pump
is constructed. The performance of the engine as a heat pump is also optimized.
By varying the time allocation between the adiabats and the contact time with
the reservoir a universal behavior can be identified. The optimal performance
of the engine when the cold bath is approaching absolute zero is studied. It is
found that the optimal cooling rate converges linearly to zero when the
temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure
Co-evolution of density and topology in a simple model of city formation
We study the influence that population density and the road network have on
each others' growth and evolution. We use a simple model of formation and
evolution of city roads which reproduces the most important empirical features
of street networks in cities. Within this framework, we explicitely introduce
the topology of the road network and analyze how it evolves and interact with
the evolution of population density. We show that accessibility issues -pushing
individuals to get closer to high centrality nodes- lead to high density
regions and the appearance of densely populated centers. In particular, this
model reproduces the empirical fact that the density profile decreases
exponentially from a core district. In this simplified model, the size of the
core district depends on the relative importance of transportation and rent
costs.Comment: 13 pages, 13 figure
A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices
Improvement of thermoelectric systems in terms of performance and range of
applications relies on progress in materials science and optimization of device
operation. In this chapter, we focuse on optimization by taking into account
the interaction of the system with its environment. For this purpose, we
consider the illustrative case of a thermoelectric generator coupled to two
temperature baths via heat exchangers characterized by a thermal resistance,
and we analyze its working conditions. Our main message is that both electrical
and thermal impedance matching conditions must be met for optimal device
performance. Our analysis is fundamentally based on linear nonequilibrium
thermodynamics using the force-flux formalism. An outlook on mesoscopic systems
is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito
Koumoto and Takao Mori, Springer Series in Materials Science Volume 182
(2013
Direct measurements of OH and other product yields from the HO2 + CH3C(O)O2 reaction
The reaction CH3C(O)O2 + HO2 → CH3C(O)OOH+O2 (Reaction R5a), CH3C(O)OH+O3 (Reaction R5b), CH3+CO2+OH+O2 (Reaction R5c) was studied in a series of experiments conducted at 1000 mbar and (293±2)K in the HIRAC simulation chamber. For the first time, products, (CH3C(O)OOH, CH3C(O)OH, O3 and OH) from all three branching pathways of the reaction have been detected directly and simultaneously. Measurements of radical precursors (CH3OH, CH3CHO), HO2 and some secondary products HCHO and HCOOH further constrained the system. Fitting a comprehensive model to the experimental data, obtained over a range of conditions, determined the branching ratios α(R5a) = 0.37±0.10, α(R5b) =0.12±0.04 and α(R5c) =0.51±0.12 (errors at 2σ level). Improved measurement/model agreement was achieved using k(R5) =(2.4±0.4)×10-11 cm3 molecule-1 s-1, which is within the large uncertainty of the current IUPAC and JPL recommended rate coefficients for the title reaction. The rate coefficient and branching ratios are in good agreement with a recent study performed by Groß et al. (2014b); taken together, these two studies show that the rate of OH regeneration through Reaction (R5) is more rapid than previously thought. GEOS-Chem has been used to assess the implications of the revised rate coefficients and branching ratios; the modelling shows an enhancement of up to 5% in OH concentrations in tropical rainforest areas and increases of up to 10% at altitudes of 6-8 km above the equator, compared to calculations based on the IUPAC recommended rate coefficient and yield. The enhanced rate of acetylperoxy consumption significantly reduces PAN in remote regions (up to 30 %) with commensurate reductions in background NOx
Effect of substrate thermal resistance on space-domain microchannel
In recent years, Fluorescent Melting Curve Analysis (FMCA) has become an almost ubiquitous feature of commercial quantitative PCR (qPCR) thermal cyclers. Here a micro-fluidic device is presented capable of performing FMCA within a microchannel. The device consists of modular thermally conductive blocks which can sandwich a microfluidic substrate. Opposing ends of the blocks are held at differing temperatures and a linear thermal gradient is generated along the microfluidic channel. Fluorescent measurements taken from a sample as it passes along the micro-fluidic channel permits fluorescent melting curves to be generated. In this study we measure DNA melting temperature from two plasmid fragments. The effects of flow velocity and ramp-rate are investigated, and measured melting curves are compared to those acquired from a commercially available PCR thermocycler
Recommended from our members
Comparative design study of a diesel exhaust gas heat exchanger for truck applications with conventional and state of the art heat transfer enhancements
The exhaust gas of heavy duty diesel engines can provide an important heat source that may be used in a number of ways to provide additional power and improve overall engine efficiency. The sizing of a heat exchanger that can manage the heat load and still be of reasonable size and weight without excessive pressure drop is of significant importance especially for truck applications. This is the subject of the present work. To approach the problem, a total of five different configurations are investigated and a comparison of conventional and state of the art heat transfer enhancement technologies is included. Two groups of configurations are examined: (a) a classical shell and tube heat exchanger using staggered cross-flow tube bundles with smooth circular tubes, finned tubes and tubes with dimpled surfaces and (b) a cross-flow plate heat exchanger, initially with finned surfaces on the exhaust gas side and then with 10 ppi and 40 ppi metal foam material substituting for the fins. Calculations were performed, using established heat exchanger design methodologies and recently published data from the literature to size the aforementioned configurations. The solutions provided reduce the overall heat exchanger size, with the plate and fin type consisting of plain fins presenting the minimum pressure drop (up to 98% reduction compared to the other configurations), and the 40 ppi metal foam being the most compact in terms of size and weight. Durability of the solutions is another issue which will be examined in a future investigation. However, coupling of the exhaust heat exchanger after a particulate trap appears to be the most promising solution to avoid clogging from soot accumulation
Oscillatory dissipative conjugate heat and mass transfer in chemically-reacting micropolar flow with wall couple stress : a finite element numerical study
High temperature non-Newtonian materials processing provides a stimulating area for process engineering simulation. Motivated by emerging applications in this area, the present article investigates the time-dependent free convective flow of a chemically-reacting micropolar fluid from a vertical plate oscillating in its own plane adjacent to a porous medium. Thermal radiative, viscous dissipation and wall couple stress effects are included. The Rosseland diffusion approximation is used to model uni-directional radiative heat flux in the energy equation. Darcy’s model is adopted to mimic porous medium drag force effects. The governing two-dimensional conservation equations are normalized with appropriate variables and transformed into a dimensionless, coupled, nonlinear system of partial differential equations under the assumption of low Reynolds number. The governing boundary value problem is then solved under physically viable boundary conditions numerically with a finite element method based on the weighted residual approach. Graphical illustrations for velocity, micro-rotation (angular velocity), temperature and concentration are obtained as functions of the emerging physical parameters i.e. thermal radiation, viscous dissipation, first order chemical reaction parameter etc. Furthermore, friction factor (skin friction), surface heat transfer and mass transfer rates have been tabulated quantitatively for selected thermo-physical parameters. A comparison with previously published paper is made to check the validity and accuracy of the present finite element solutions under some limiting cases and excellent agreement is attained. Additionally, a mesh independence study is conducted. The model is relevant to reactive polymeric materials processing simulation
- …
