94 research outputs found

    Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sesame is an important oil crop, but limited transcriptomic and genomic data are currently available. This information is essential to clarify the fatty acid and lignan biosynthesis molecular mechanism. In addition, a shortage of sesame molecular markers limits the efficiency and accuracy of genetic breeding. High-throughput transcriptomic sequencing is essential to generate a large transcriptome sequence dataset for gene discovery and molecular marker development.</p> <p>Results</p> <p>Sesame transcriptomes from five tissues were sequenced using Illumina paired-end sequencing technology. The cleaned raw reads were assembled into a total of 86,222 unigenes with an average length of 629 bp. Of the unigenes, 46,584 (54.03%) had significant similarity with proteins in the NCBI nonredundant protein database and Swiss-Prot database (E-value < 10<sup>-5</sup>). Of these annotated unigenes, 10,805 and 27,588 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. In total, 22,003 (25.52%) unigenes were mapped onto 119 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Furthermore, 44,750 unigenes showed homology to 15,460 <it>Arabidopsis </it>genes based on BLASTx analysis against The Arabidopsis Information Resource (TAIR, Version 10) and revealed relatively high gene coverage. In total, 7,702 unigenes were converted into SSR markers (EST-SSR). Dinucleotide SSRs were the dominant repeat motif (67.07%, 5,166), followed by trinucleotide (24.89%, 1,917), tetranucleotide (4.31%, 332), hexanucleotide (2.62%, 202), and pentanucleotide (1.10%, 85) SSRs. AG/CT (46.29%) was the dominant repeat motif, followed by AC/GT (16.07%), AT/AT (10.53%), AAG/CTT (6.23%), and AGG/CCT (3.39%). Fifty EST-SSRs were randomly selected to validate amplification and to determine the degree of polymorphism in the genomic DNA pools. Forty primer pairs successfully amplified DNA fragments and detected significant amounts of polymorphism among 24 sesame accessions.</p> <p>Conclusions</p> <p>This study demonstrates that Illumina paired-end sequencing is a fast and cost-effective approach to gene discovery and molecular marker development in non-model organisms. Our results provide a comprehensive sequence resource for sesame research.</p

    Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    Get PDF
    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques

    Status and importance of the oilseed Sesame in Africa

    No full text

    Immunodeficiency and reticulum cell sarcoma in mice segregating for HRS/J and SJL/J genes.

    No full text
    Hairless (hr/hr) mice segregating for SJL/J and HRS/J genes (SJL-HRS) were compared to their haired counterparts with respect to immune responsiveness, tumour development and ecotropic murine leukemia virus (MuLV) expression. Homozygosity at the hairless locus did not affect expression of MuLV. There was however, a significant depression of the cellular immune response of these mice as characterized by depressed reactions in phytohemagglutinin, concanavalin A and mixed leukocyte assays. Haired and hairless mice did not differ significantly in response to B-cell mitogens or in production of cytotoxic antibody. The depressed cellular immune response in hr/hr mice is associated with a distinctive histologic type of spontaneous reticulum cell sarcomas. The importance of these results in relation to previous studies of HRS/J hairless mice is discussed
    • …
    corecore