154 research outputs found
Anomalies in Ward Identities for Three-Point Functions Revisited
A general calculational method is applied to investigate symmetry relations
among divergent amplitudes in a free fermion model. A very traditional work on
this subject is revisited. A systematic study of one, two and three point
functions associated to scalar, pseudoscalar, vector and axial-vector densities
is performed. The divergent content of the amplitudes are left in terms of five
basic objects (external momentum independent). No specific assumptions about a
regulator is adopted in the calculations. All ambiguities and symmetry
violating terms are shown to be associated with only three combinations of the
basic divergent objects. Our final results can be mapped in the corresponding
Dimensional Regularization calculations (in cases where this technique could be
applied) or in those of Gertsein and Jackiw which we will show in detail. The
results emerging from our general approach allow us to extract, in a natural
way, a set of reasonable conditions (e.g. crucial for QED consistency) that
could lead us to obtain all Ward Identities satisfied. Consequently, we
conclude that the traditional approach used to justify the famous triangular
anomalies in perturbative calculations could be questionable. An alternative
point of view, dismissed of ambiguities, which lead to a correct description of
the associated phenomenology, is pointed out.Comment: 26 pages, Revtex, revised version, Refs. adde
From arbitrariness to ambiguities in the evaluation of perturbative physical amplitudes and their symmetry relations
A very general calculational strategy is applied to the evaluation of the
divergent physical amplitudes which are typical of perturbative calculations.
With this approach in the final results all the intrinsic arbitrariness of the
calculations due to the divergent character is still present. We show that by
using the symmetry properties as a guide to search for the (compulsory) choices
in such a way as to avoid ambiguities, a deep and clear understanding of the
role of regularization methods emerges. Requiring then an universal point of
view for the problem, as allowed by our approach, very interesting conclusions
can be stated about the possible justifications of most intriguing aspect of
the perturbative calculations in quantum field theory: the triangle anomalies.Comment: 16 pages, no figure
Consistency in Regularizations of the Gauged NJL Model at One Loop Level
In this work we revisit questions recently raised in the literature
associated to relevant but divergent amplitudes in the gauged NJL model. The
questions raised involve ambiguities and symmetry violations which concern the
model's predictive power at one loop level. Our study shows by means of an
alternative prescription to handle divergent amplitudes, that it is possible to
obtain unambiguous and symmetry preserving amplitudes. The procedure adopted
makes use solely of {\it general} properties of an eventual regulator, thus
avoiding an explicit form. We find, after a thorough analysis of the problem
that there are well established conditions to be fulfiled by any consistent
regularization prescription in order to avoid the problems of concern at one
loop level.Comment: 22 pages, no figures, LaTeX, to appear in Phys.Rev.
Stationary solutions for the parity-even sector of the CPT-even and Lorentz-covariance-violating term of the standard model extension
In this work, we focus on some properties of the parity-even sector of the
CPT-even electrodynamics of the standard model extension. We analyze how the
six non-birefringent terms belonging to this sector modify the static and
stationary classical solutions of the usual Maxwell theory. We observe that the
parity-even terms do not couple the electric and magnetic sectors (at least in
the stationary regime). The Green's method is used to obtain solutions for the
field strengths E and B at first order in the Lorentz- covariance-violating
parameters. Explicit solutions are attained for point-like and spatially
extended sources, for which a dipolar expansion is achieved. Finally, it is
presented an Earth-based experiment that can lead (in principle) to an upper
bound on the anisotropic coefficients as stringent as
Comment: 8 pages, revtex style, revised published version, to appear in EPJC
(2009
Hadamard magnetization transfers achieve dramatic sensitivity enhancements in homonuclear multidimensional NMR correlations of labile sites in proteins, polysaccharides and nucleic acids
EXSY, TOCSY and NOESY lie at the foundation of homonuclear NMR experiments in
organic and pharmaceutical chemistry, as well as in structural biology. Limited
magnetization transfer efficiency is an intrinsic downside of these methods,
particularly when targeting rapidly exchanging species such as labile protons
ubiquitous in polysaccharides, sidechains and backbones of proteins, and in
bases and sugars of nucleic acids: the fast decoherence imparted on these
protons through solvent exchanges, greatly reduces their involvement in
homonuclear correlation experiments. We have recently discussed how these
decoherences can be visualized as an Anti-Zeno Effect, that can be harnessed to
enhance the efficiency of homonuclear transfers within Looped PROjected
SpectroscopY (L-PROSY) leading to 200-300% enhancements in NOESY and TOCSY
cross-peaks for amide groups in biomolecules. This study demonstrates that even
larger sensitivity gains per unit time, equivalent to reductions by several
hundred-folds in the duration of experiments, can be achieved by looping
inversion or using saturation procedures. In the ensuing experiments a priori
selected frequencies are encoded according to Hadamard recipes, and
subsequently resolved along the indirect dimension via linear combinations.
Magnetization-transfer (MT) processes reminiscent of those occurring in CEST
provide significant enhancements in the resulting cross-peaks, in only a
fraction of acquisition time of a normal 2D experiment. The effectiveness of
the ensuing three-way polarization transfer interplay between water, labile and
non-labile protons was corroborated experimentally for proteins,
homo-oligosaccharides and nucleic acids. In all cases, cross-peaks barely
detectable in conventional 2D NMR counterparts, were measured ca. 10-fold
faster and with 200-600% signal enhancements by the Hadamard MT counterparts
A rapid Electrochemical Procedure for the Determination of Hg(0) Produced by Mercury-Reductase: Application for Monitoring Hg-resistant Bacteria Activity
In this work, gold microelectrodes are employed as traps for the detection of volatilized metallic mercury produced by mercuric reductase (MerA) extracted from an Hg-resistant Pseudo monas putida strain FB1. The enzymatic reduction of Hg (II) to Hg (0) was induced by NADPH cofactor added to the samples. The amount of Hg(0) accumulated on the gold microelectrode surface was determined by anodic stripping voltammetry (ASV) after transferring the gold microelectrode in an aqueous solution containing 0.1 M HNO3 + 1 M KNO3. Electrochemical measurements were combined with spectrofluorometric assays of NADPH consumption to derive an analytical expression for the detection of a relative MerA activity of different samples with respect to that of P. putida. The method developed here was employed for the rapid determination of MerA produced by bacteria harbored in soft tissues of clams (Ruditapes philippinarum), collected in high Hg polluted sediments of Northern Adriatic Sea in Italy
Cultivable bacterial communities in brines from perennially icecovered and pristine antarctic lakes: Ecological and biotechnological implications
The diversity and biotechnological potentialities of bacterial isolates from brines of three Antarctic lakes of the Northern Victoria Land (namely Boulder Clay and Tarn Flat areas) were first explored. Cultivable bacterial communities were analysed mainly in terms of bacterial response to contaminants (i.e., antibiotics and heavy metals) and oxidation of contaminants (i.e., aliphatic and aromatic hydrocarbons and polychlorobiphenyls). Moreover, the biosynthesis of biomolecules (antibiotics, extracellular polymeric substances and enzymes) with applications for human health and environmental protection was assayed. A total of 74 and 141 isolates were retrieved from Boulder Clay and Tarn Flat brines, respectively. Based on 16S rRNA gene sequence similarities, bacterial isolates represented three phyla, namely Proteobacteria (i.e., Gamma and Alphaproteobacteria), Bacteroidetes and Actinobacteria, with differences encountered among brines. At genus level, Rhodobacter, Pseudomonas, Psychrobacter and Leifsonia members were dominant. Results obtained from this study on the physiological and enzymatic features of coldadapted isolates from Antarctic lake brines provide interesting prospects for possible applications in the biotechnological field through future targeted surveys. Finally, findings on contaminant occurrence and bacterial response suggest that bacteria might be used as bioindicators for tracking human footprints in these remote polar areas
Late Holocene records of fire and human presence in New Zealand
New Zealand, and the South Island in particular, can be considered an excellent test site for the study of the\ud
early impact of humans on the environment for two main reasons: the Polynesian settlement occurred only\ud
about 700-800 y BP and resulted in abrupt and huge landscape modifications. Burning forest for land clearance\ud
impacted dramatically on an ecosystem that was not adapted to fire, changing the composition of the vegetation\ud
as documented by sedimentary charcoal and pollen records. Although charcoal data give incontrovertible\ud
evidence of some unprecedented fire events right after the arrival of the Maori, its significance as a tracer for local\ud
and anthropogenic fire events has been questioned, stressing the need for new markers to confirm and complete the information about human presence and its effective impact.\ud
In the present work, faecal sterols and polycyclic aromatic hydrocarbons (PAHs) were individuated as suitable\ud
molecular markers and analyzed by GC-MS in a sediment core from Lake Kirkpatrick, located in the Lake\ud
Wakatipu catchment at 570 m a.s.l. in the South Island of New Zealand. Coprostanol accounts for about 60%\ud
of total sterol content in human faeces, being much less relevant in animal dejections. Together with its\ud
degradation product epi-coprostanol, it is well conserved in sedimentary archives and can be highly useful in\ud
paleoenvironmental reconstructions of human settlements. PAHs are produced in relevant amounts by combustion in conditions of oxygen depletion, and diagnostic ratios (DR) between specific molecules can be used for inferring fuel and sources.\ud
The charcoal record for Lake Kirkpatrick shows major fire episodes around AD 1350, confirmed by corresponding high levels of PAHs ascribable to biomass burning (as further evidenced by DR) at c. AD 1350. Moreover, the same trend is observed also in the fluxes of coprostanol and epi-coprostanol, whose sum results in two peaks at c. AD 1346 and 1351. This finding confirms not only the massive presence of humans in the area and the large use of fire at the time, but also complements and refines the reconstructions enabled by charcoal analysis
Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: A multi-biomarker reconstruction from Paru Co
The fire history of the Tibetan Plateau over centennial to millennial timescales is not well known. Recent ice core studies reconstruct fire history over the past few decades but do not extend through the Holocene. Lacustrine sedimentary cores, however, can provide continuous records of local environmental change on millennial scales during the Holocene through the accumulation and preservation of specific organic molecular biomarkers. To reconstruct Holocene fire events and vegetation changes occurring on the southeastern Tibetan Plateau and the surrounding areas, we used a multi-proxy approach, investigating multiple biomarkers preserved in core sediment samples retrieved from Paru Co, a small lake located in the Nyainqentanglha Mountains (29°47045.600N, 92°21007.200 E; 4845ma.s.l.). Biomarkers include n-alkanes as indicators of vegetation, polycyclic aromatic hydrocarbons (PAHs) as combustion proxies, fecal sterols and stanols (FeSts) as indicators of the presence of humans or grazing animals, and finally monosaccharide anhydrides (MAs) as specific markers of vegetation burning processes. Insolation changes and the associated influence on the Indian summer monsoon (ISM) affect the vegetation distribution and fire types recorded in Paru Co throughout the Holocene. The early Holocene (10.7- 7.5 cal kyr BP) n-alkane ratios demonstrate oscillations between grass and conifer communities, resulting in respective smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by high-molecular-weight PAHs. Forest cover increases with a strengthened ISM, where coincident high levoglucosan to mannosan (L = M) ratios are consistent with conifer burning. The decrease in the ISM at 4.2 cal kyr BP corresponds with the expansion of regional civilizations, although the lack of human FeSts above the method detection limits excludes local anthropogenic influence on fire and vegetation changes. The late Holocene is characterized by a relatively shallow lake surrounded by grassland, where all biomarkers other than PAHs display only minor variations. The sum of PAHs steadily increases throughout the late Holocene, suggesting a net increase in local to regional combustion that is separate from vegetation and climate change
On the equivalence between Implicit Regularization and Constrained Differential Renormalization
Constrained Differential Renormalization (CDR) and the constrained version of
Implicit Regularization (IR) are two regularization independent techniques that
do not rely on dimensional continuation of the space-time. These two methods
which have rather distinct basis have been successfully applied to several
calculations which show that they can be trusted as practical, symmetry
invariant frameworks (gauge and supersymmetry included) in perturbative
computations even beyond one-loop order.
In this paper, we show the equivalence between these two methods at one-loop
order. We show that the configuration space rules of CDR can be mapped into the
momentum space procedures of Implicit Regularization, the major principle
behind this equivalence being the extension of the properties of regular
distributions to the regularized ones.Comment: 16 page
- …