301 research outputs found

    Numerical Green's functions in optical potential calculations for positron scattering from argon and neon

    Get PDF
    An optical potential method was applied to the calculation of positron scattering from the noble gases in order to determine the effect of open excitation channels on the shape of differential scattering cross sections

    Breakup of the aligned H2_2 molecule by xuv laser pulses: A time-dependent treatment in prolate spheroidal coordinates

    Full text link
    We have carried out calculations of the triple-differential cross section for one-photon double ionization of molecular hydrogen for a central photon energy of 7575~eV, using a fully {\it ab initio}, nonperturbative approach to solve the time-dependent \Schro equation in prolate spheroidal coordinates. The spatial coordinates ξ\xi and η\eta are discretized in a finite-element discrete-variable representation. The wave packet of the laser-driven two-electron system is propagated in time through an effective short iterative Lanczos method to simulate the double ionization of the hydrogen molecule. For both symmetric and asymmetric energy sharing, the present results agree to a satisfactory level with most earlier predictions for the absolute magnitude and the shape of the angular distributions. A notable exception, however, concerns the predictions of the recent time-independent calculations based on the exterior complex scaling method in prolate spheroidal coordinates [Phys.~Rev.~A~{\bf 82}, 023423 (2010)]. Extensive tests of the numerical implementation were performed, including the effect of truncating the Neumann expansion for the dielectronic interaction on the description of the initial bound state and the predicted cross sections. We observe that the dominant escape mode of the two photoelectrons dramatically depends upon the energy sharing. In the parallel geometry, when the ejected electrons are collected along the direction of the laser polarization axis, back-to-back escape is the dominant channel for strongly asymmetric energy sharing, while it is completely forbidden if the two electrons share the excess energy equally.Comment: 17 pages, 9 figure

    Experimental ionization of atomic hydrogen with few-cycle pulses

    Get PDF
    We present the first experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an {\it ab initio} simulation over a wide range of laser intensities and electron energies

    Precise and accurate measurements of strong-field photoionisation and a transferrable laser intensity calibration standard

    Get PDF
    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here we present measurements of the ionization yield for argon, krypton, and xenon with percentlevel accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferrable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much-needed benchmark for testing models of ionisation in noble-gas atoms, such as the widely employed single-active electron approximation.Comment: Article: 5 pages, 2 figures, submitted to PRL (manuscript number LZ14457). Supplementary information: 7 pages, 6 figures, appended to end of main Articl

    Stark Broadening of the B III 2s-2p Lines

    Get PDF
    We present a quantum-mechanical calculation of Stark line widths from electron-ion collisions for the 2s1/22p1/2,3/22s_{1/2}-2p_{1/2,3/2}, lambda = 2066 and 2067 A, resonance transitions in B III. The results confirm the previous quantum-mechanical R-matrix calculations but contradict recent measurements and semi-classical and some semi-empirical calculations. The differences between the calculations can be attributed to the dominance of small L partial waves in the electron-atom scattering, while the large Stark widths inferred from the measurements would be substantially reduced if allowance is made for hydrodynamic turbulence from high Reynolds number flows and the associated Doppler broadening.Comment: 21 pages, 4 figures; to be published in Phys. Rev.

    Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements

    Get PDF
    The paper presents an integrated view of the population structure and its role in establishing the ionization state of light elements in dynamic, finite density, laboratory and astrophysical plasmas. There are four main issues, the generalized collisional-radiative picture for metastables in dynamic plasmas with Maxwellian free electrons and its particularizing to light elements, the methods of bundling and projection for manipulating the population equations, the systematic production/use of state selective fundamental collision data in the metastable resolved picture to all levels for collisonal-radiative modelling and the delivery of appropriate derived coefficients for experiment analysis. The ions of carbon, oxygen and neon are used in illustration. The practical implementation of the methods described here is part of the ADAS Project

    R-matrix Floquet theory for laser-assisted electron-atom scattering

    Get PDF
    A new version of the R-matrix Floquet theory for laser-assisted electron-atom scattering is presented. The theory is non-perturbative and applicable to a non-relativistic many-electron atom or ion in a homogeneous linearly polarized field. It is based on the use of channel functions built from field-dressed target states, which greatly simplifies the general formalism.Comment: 18 pages, LaTeX2e, submitted to J.Phys.

    CHIANTI - an Atomic Database for Emission Lines. Paper VI: Proton Rates and Other Improvements

    Full text link
    The CHIANTI atomic database contains atomic energy levels, wavelengths, radiative transition probabilities and electron excitation data for a large number of ions of astrophysical interest. Version 4 has been released, and proton excitation data is now included, principally for ground configuration levels that are close in energy. The fitting procedure for excitation data, both electrons and protons, has been extended to allow 9 point spline fits in addition to the previous 5 point spline fits. This allows higher quality fits to data from close-coupling calculations where resonances can lead to significant structure in the Maxwellian-averaged collision strengths. The effects of photoexcitation and stimulated emission by a blackbody radiation field in a spherical geometry on the level balance equations of the CHIANTI ions can now be studied following modifications to the CHIANTI software. With the addition of H I, He I and N I, the first neutral species have been added to CHIANTI. Many updates to existing ion data-sets are described, while several new ions have been added to the database, including Ar IV, Fe VI and Ni XXI. The two-photon continuum is now included in the spectral synthesis routines, and a new code for calculating the relativistic free-free continuum has been added. The treatment of the free-bound continuum has also been updated.Comment: CHIANTI is available at http://wwwsolar.nrl.navy.mil/chianti.htm
    corecore