301 research outputs found
Numerical Green's functions in optical potential calculations for positron scattering from argon and neon
An optical potential method was applied to the calculation of positron scattering from the noble gases in order to determine the effect of open excitation channels on the shape of differential scattering cross sections
Breakup of the aligned H molecule by xuv laser pulses: A time-dependent treatment in prolate spheroidal coordinates
We have carried out calculations of the triple-differential cross section for
one-photon double ionization of molecular hydrogen for a central photon energy
of ~eV, using a fully {\it ab initio}, nonperturbative approach to solve
the time-dependent \Schro equation in prolate spheroidal coordinates. The
spatial coordinates and are discretized in a finite-element
discrete-variable representation. The wave packet of the laser-driven
two-electron system is propagated in time through an effective short iterative
Lanczos method to simulate the double ionization of the hydrogen molecule. For
both symmetric and asymmetric energy sharing, the present results agree to a
satisfactory level with most earlier predictions for the absolute magnitude and
the shape of the angular distributions. A notable exception, however, concerns
the predictions of the recent time-independent calculations based on the
exterior complex scaling method in prolate spheroidal coordinates
[Phys.~Rev.~A~{\bf 82}, 023423 (2010)]. Extensive tests of the numerical
implementation were performed, including the effect of truncating the Neumann
expansion for the dielectronic interaction on the description of the initial
bound state and the predicted cross sections. We observe that the dominant
escape mode of the two photoelectrons dramatically depends upon the energy
sharing. In the parallel geometry, when the ejected electrons are collected
along the direction of the laser polarization axis, back-to-back escape is the
dominant channel for strongly asymmetric energy sharing, while it is completely
forbidden if the two electrons share the excess energy equally.Comment: 17 pages, 9 figure
Experimental ionization of atomic hydrogen with few-cycle pulses
We present the first experimental data on strong-field ionization of atomic
hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10%
level between the data and an {\it ab initio} simulation over a wide range of
laser intensities and electron energies
Precise and accurate measurements of strong-field photoionisation and a transferrable laser intensity calibration standard
Ionization of atoms and molecules in strong laser fields is a fundamental
process in many fields of research, especially in the emerging field of
attosecond science. So far, demonstrably accurate data have only been acquired
for atomic hydrogen (H), a species that is accessible to few investigators.
Here we present measurements of the ionization yield for argon, krypton, and
xenon with percentlevel accuracy, calibrated using H, in a laser regime widely
used in attosecond science. We derive a transferrable calibration standard for
laser peak intensity, accurate to 1.3%, that is based on a simple reference
curve. In addition, our measurements provide a much-needed benchmark for
testing models of ionisation in noble-gas atoms, such as the widely employed
single-active electron approximation.Comment: Article: 5 pages, 2 figures, submitted to PRL (manuscript number
LZ14457). Supplementary information: 7 pages, 6 figures, appended to end of
main Articl
Stark Broadening of the B III 2s-2p Lines
We present a quantum-mechanical calculation of Stark line widths from
electron-ion collisions for the , lambda = 2066 and 2067
A, resonance transitions in B III. The results confirm the previous
quantum-mechanical R-matrix calculations but contradict recent measurements and
semi-classical and some semi-empirical calculations. The differences between
the calculations can be attributed to the dominance of small L partial waves in
the electron-atom scattering, while the large Stark widths inferred from the
measurements would be substantially reduced if allowance is made for
hydrodynamic turbulence from high Reynolds number flows and the associated
Doppler broadening.Comment: 21 pages, 4 figures; to be published in Phys. Rev.
Recommended from our members
Reevaluation of experiments and new theoretical calculations for electron-impact excitation of C3+
Experimental absolute-rate coefficients for electron-impact excitation of C3+ (2s2S1/2→2p2P1/2,3/2) near threshold [D. W. Savin, L. D. Gardner, D. B. Reisenfeld, A. R. Young, and J. L. Kohl, Phys. Rev. A 51, 2162 (1995)] have been reanalyzed to include a more accurate determination of optical efficiency and revised radiometric uncertainties which reduce the total systematic uncertainty of the results. Also, new R matrix with pseudostates (RMPS) calculations for this transition near threshold are presented. Comparison of the RMPS results to those of simpler close-coupling calculations indicates the importance of accounting for target continuum effects. The reanalyzed results of Savin et al. are in excellent agreement with the RMPS calculations; comparisons are also made to other measurements of this excitation. Agreement with the RMPS results is better for fluorescence technique measurements than for electron-energy-loss measurements
Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements
The paper presents an integrated view of the population structure and its role in establishing the ionization state of light elements in dynamic, finite density, laboratory and astrophysical plasmas. There are four main issues, the generalized collisional-radiative picture for metastables in dynamic plasmas with Maxwellian free electrons and its particularizing to light elements, the methods of bundling and projection for manipulating the population equations, the systematic production/use of state selective fundamental collision data in the metastable resolved picture to all levels for collisonal-radiative modelling and the delivery of appropriate derived coefficients for experiment analysis. The ions of carbon, oxygen and neon are used in illustration. The practical implementation of the methods described here is part of the ADAS Project
R-matrix Floquet theory for laser-assisted electron-atom scattering
A new version of the R-matrix Floquet theory for laser-assisted electron-atom
scattering is presented. The theory is non-perturbative and applicable to a
non-relativistic many-electron atom or ion in a homogeneous linearly polarized
field. It is based on the use of channel functions built from field-dressed
target states, which greatly simplifies the general formalism.Comment: 18 pages, LaTeX2e, submitted to J.Phys.
CHIANTI - an Atomic Database for Emission Lines. Paper VI: Proton Rates and Other Improvements
The CHIANTI atomic database contains atomic energy levels, wavelengths,
radiative transition probabilities and electron excitation data for a large
number of ions of astrophysical interest. Version 4 has been released, and
proton excitation data is now included, principally for ground configuration
levels that are close in energy. The fitting procedure for excitation data,
both electrons and protons, has been extended to allow 9 point spline fits in
addition to the previous 5 point spline fits. This allows higher quality fits
to data from close-coupling calculations where resonances can lead to
significant structure in the Maxwellian-averaged collision strengths. The
effects of photoexcitation and stimulated emission by a blackbody radiation
field in a spherical geometry on the level balance equations of the CHIANTI
ions can now be studied following modifications to the CHIANTI software. With
the addition of H I, He I and N I, the first neutral species have been added to
CHIANTI. Many updates to existing ion data-sets are described, while several
new ions have been added to the database, including Ar IV, Fe VI and Ni XXI.
The two-photon continuum is now included in the spectral synthesis routines,
and a new code for calculating the relativistic free-free continuum has been
added. The treatment of the free-bound continuum has also been updated.Comment: CHIANTI is available at http://wwwsolar.nrl.navy.mil/chianti.htm
- …
