249 research outputs found

    Numerical Green's functions in optical potential calculations for positron scattering from argon and neon

    Get PDF
    An optical potential method was applied to the calculation of positron scattering from the noble gases in order to determine the effect of open excitation channels on the shape of differential scattering cross sections

    Low and intermediate energy electron collisions with the C2_2^- molecular anion

    Full text link
    Calculations are presented which use the molecular R-matrix with pseudo-states (MRMPS) method to treat electron impact electron detachment and electronic excitation of the carbon dimer anion. Resonances are found above the ionisation threshold of C2_2^- with 1Σg+^1\Sigma^+_g, 1Πg^1\Pi_g and 3Πg^3\Pi_g symmetry. These are shape resonances trapped by the effect of an attractive polarisation potential competing with a repulsive Coulomb interaction. The Πg\Pi_g resonances are found to give structure in the detachment cross section similar to that observed experimentally. Both excitation and detachment cross sections are found to be dominated by large impact parameter collisions whose contribution is modelled using the Born approximation.Comment: 18 pages, 5 figures constructed from 8 file

    Breakup of the aligned H2_2 molecule by xuv laser pulses: A time-dependent treatment in prolate spheroidal coordinates

    Full text link
    We have carried out calculations of the triple-differential cross section for one-photon double ionization of molecular hydrogen for a central photon energy of 7575~eV, using a fully {\it ab initio}, nonperturbative approach to solve the time-dependent \Schro equation in prolate spheroidal coordinates. The spatial coordinates ξ\xi and η\eta are discretized in a finite-element discrete-variable representation. The wave packet of the laser-driven two-electron system is propagated in time through an effective short iterative Lanczos method to simulate the double ionization of the hydrogen molecule. For both symmetric and asymmetric energy sharing, the present results agree to a satisfactory level with most earlier predictions for the absolute magnitude and the shape of the angular distributions. A notable exception, however, concerns the predictions of the recent time-independent calculations based on the exterior complex scaling method in prolate spheroidal coordinates [Phys.~Rev.~A~{\bf 82}, 023423 (2010)]. Extensive tests of the numerical implementation were performed, including the effect of truncating the Neumann expansion for the dielectronic interaction on the description of the initial bound state and the predicted cross sections. We observe that the dominant escape mode of the two photoelectrons dramatically depends upon the energy sharing. In the parallel geometry, when the ejected electrons are collected along the direction of the laser polarization axis, back-to-back escape is the dominant channel for strongly asymmetric energy sharing, while it is completely forbidden if the two electrons share the excess energy equally.Comment: 17 pages, 9 figure

    Experimental ionization of atomic hydrogen with few-cycle pulses

    Get PDF
    We present the first experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an {\it ab initio} simulation over a wide range of laser intensities and electron energies

    Calibration of distorted wave Born approximation for electron impact excitation of Ne and Ar at incident energies below 100 eV

    Full text link
    We calibrate the distorted wave Born approximation (DWBA) for electron impact excitation processes empirically. Differential cross sections (DCS) for the excitation of the 2p53s2p^53s, 2p53p2p^53p,2p54s2p^54s, and 2p54p2p^54p configurations of Ne and the 3p54s3p^54s and 3p54p3p^54p configurations of Ar by electron impact are calculated using DWBA for incident energies between 20 and 100 eV. The calculated results are compared with the absolute experimental measurements and other theoretical results. We found that the structure of the DCS can be well reproduced by the DWBA model while the magnitude is overestimated for most cases considered here. The differences in magnitude between DWBA and experiment are used to test the calibration of DWBA such that the DWBA can be used to describe laser-induced electron impact excitation processes. These processes are involved in the non-sequential double ionization of atoms in strong laser fields.Comment: 10 pages, 8 figure
    corecore