7,772 research outputs found
Emotional engagements predict and enhance social cognition in young chimpanzees
Social cognition in infancy is evident in coordinated triadic engagements, that is, infants attending jointly with social partners and objects. Current evolutionary theories of primate social cognition tend to highlight species differences in cognition based on human-unique cooperative motives. We consider a developmental model in which engagement experiences produce differential outcomes. We conducted a 10-year-long study in which two groups of laboratory-raised chimpanzee infants were given quantifiably different engagement experiences. Joint attention, cooperativeness, affect, and different levels of cognition were measured in 5- to 12-month-old chimpanzees, and compared to outcomes derived from a normative human database. We found that joint attention skills significantly improved across development for all infants, but by 12 months, the humans significantly surpassed the chimpanzees. We found that cooperativeness was stable in the humans, but by 12 months, the chimpanzee group given enriched engagement experiences significantly surpassed the humans. Past engagement experiences and concurrent affect were significant unique predictors of both joint attention and cooperativeness in 5- to 12-month-old chimpanzees. When engagement experiences and concurrent affect were statistically controlled, joint attention and cooperation were not associated. We explain differential social cognition outcomes in terms of the significant influences of previous engagement experiences and affect, in addition to cognition. Our study highlights developmental processes that underpin the emergence of social cognition in support of evolutionary continuity
Noise-induced synchronization and anti-resonance in excitable systems; Implications for information processing in Parkinson's Disease and Deep Brain Stimulation
We study the statistical physics of a surprising phenomenon arising in large
networks of excitable elements in response to noise: while at low noise,
solutions remain in the vicinity of the resting state and large-noise solutions
show asynchronous activity, the network displays orderly, perfectly
synchronized periodic responses at intermediate level of noise. We show that
this phenomenon is fundamentally stochastic and collective in nature. Indeed,
for noise and coupling within specific ranges, an asymmetry in the transition
rates between a resting and an excited regime progressively builds up, leading
to an increase in the fraction of excited neurons eventually triggering a chain
reaction associated with a macroscopic synchronized excursion and a collective
return to rest where this process starts afresh, thus yielding the observed
periodic synchronized oscillations. We further uncover a novel anti-resonance
phenomenon: noise-induced synchronized oscillations disappear when the system
is driven by periodic stimulation with frequency within a specific range. In
that anti-resonance regime, the system is optimal for measures of information
capacity. This observation provides a new hypothesis accounting for the
efficiency of Deep Brain Stimulation therapies in Parkinson's disease, a
neurodegenerative disease characterized by an increased synchronization of
brain motor circuits. We further discuss the universality of these phenomena in
the class of stochastic networks of excitable elements with confining coupling,
and illustrate this universality by analyzing various classical models of
neuronal networks. Altogether, these results uncover some universal mechanisms
supporting a regularizing impact of noise in excitable systems, reveal a novel
anti-resonance phenomenon in these systems, and propose a new hypothesis for
the efficiency of high-frequency stimulation in Parkinson's disease
YF-17/ADEN system study
The YF-17 aircraft was evaluated as a candidate nonaxisymmetric nozzle flight demonstrator. Configuration design modifications, control system design, flight performance assessment, and program plan and cost we are summarized. Two aircraft configurations were studied. The first was modified as required to install only the augmented deflector exhaust nozzle (ADEN). The second one added a canard installation to take advantage of the full (up to 20 deg) nozzle vectoring capability. Results indicate that: (1) the program is feasible and can be accomplished at reasonable cost and low risk; (2) installation of ADEN increases the aircraft weight by 600 kg (1325 lb); (3) the control system can be modified to accomplish direct lift, pointing capability, variable static margin and deceleration modes of operation; (4) unvectored thrust-minus-drag is similar to the baseline YF-17; and (5) vectoring does not improve maneuvering performance. However, some potential benefits in direct lift, aircraft pointing, handling at low dynamic pressure and takeoff/landing ground roll are available. A 27 month program with 12 months of flight test is envisioned, with the cost estimated to be 13.2 million for the version without canard. The feasiblity of adding a thrust reverser to the YF-17/ADEN was investigated
Magnetic and electrical properties of (Pu,Lu)Pd3
We present measurements of the magnetic susceptibility, heat capacity and
electrical resistivity of PuLuPd, with =0, 0.1, 0.2, 0.5,
0.8 and 1. PuPd is an antiferromagnetic heavy fermion compound with
~K. With increasing Lu doping, both the Kondo and RKKY interaction
strengths fall, as judged by the Sommerfeld coefficient and N\'eel
temperature . Fits to a crystal field model of the resistivity also
support these conclusions. The paramagnetic effective moment
increases with Lu dilution, indicating a decrease in the
Kondo screening. In the highly dilute limit, approaches
the value predicted by intermediate coupling calculations. In conjunction with
an observed Schottky peak at 60~K in the magnetic heat capacity,
corresponding to a crystal field splitting of 12~meV, a mean-field
intermediate coupling model with nearest neighbour interactions has been
developed.Comment: 13 pages, 13 figure
- …