8,386 research outputs found
Long lifetimes of ultra-hot particles in interacting Fermi systems
The energy dependence of the relaxation rate of hot electrons due to
interaction with the Fermi sea is studied. We consider 2D and 3D systems,
quasi-1D quantum wires with multiple transverse bands, as well as
single-channel 1D wires. Our analysis includes both spinful and spin-polarized
setups, with short-range and Coulomb interactions. We show that, quite
generally, the relaxation rate is a non-monotonic function of the electron
energy and decays as a power-law at high energies. In other words, ultra-hot
electrons regain their coherence with increasing energy. Such a behavior was
observed in a recent experiment on multi-band quantum wires, J. Reiner et al,
Phys. Rev. X {\bf 7}, 021016 (2017).Comment: 22 pages, 13 figure
Decay of plasmonic waves in Josephson junction chains
We study the damping of plasma waves in linear Josephson junction chains as
well as in two capacitively coupled chains. In the parameter regime where the
ground capacitance can be neglected, the theory of the antisymmetric mode in
the double chain can be mapped onto the theory of a single chain. We consider
two sources of relaxation: the scattering from quantum phase slips (QPS) and
the interaction among plasmons related to the nonlinearity of the Josephson
potential. The contribution to the relaxation rate from the
nonlinearity scales with the fourth power of frequency , while the
phase-slip contribution behaves as a power law with a non-universal exponent.
In the parameter regime where the charging energy related to the junction
capacitance is much smaller than the Josephson energy, the amplitude of QPS is
strongly suppressed. This makes the relaxation mechanism related to QPS
efficient only at very low frequencies. As a result, for chains that are in the
infrared limit on the insulating side of the superconductor-insulator
transition, the quality factor shows a strongly non-monotonic
dependence on frequency, as was observed in a recent experiment.Comment: 14 pages, 4 figure
Noise-induced synchronization and anti-resonance in excitable systems; Implications for information processing in Parkinson's Disease and Deep Brain Stimulation
We study the statistical physics of a surprising phenomenon arising in large
networks of excitable elements in response to noise: while at low noise,
solutions remain in the vicinity of the resting state and large-noise solutions
show asynchronous activity, the network displays orderly, perfectly
synchronized periodic responses at intermediate level of noise. We show that
this phenomenon is fundamentally stochastic and collective in nature. Indeed,
for noise and coupling within specific ranges, an asymmetry in the transition
rates between a resting and an excited regime progressively builds up, leading
to an increase in the fraction of excited neurons eventually triggering a chain
reaction associated with a macroscopic synchronized excursion and a collective
return to rest where this process starts afresh, thus yielding the observed
periodic synchronized oscillations. We further uncover a novel anti-resonance
phenomenon: noise-induced synchronized oscillations disappear when the system
is driven by periodic stimulation with frequency within a specific range. In
that anti-resonance regime, the system is optimal for measures of information
capacity. This observation provides a new hypothesis accounting for the
efficiency of Deep Brain Stimulation therapies in Parkinson's disease, a
neurodegenerative disease characterized by an increased synchronization of
brain motor circuits. We further discuss the universality of these phenomena in
the class of stochastic networks of excitable elements with confining coupling,
and illustrate this universality by analyzing various classical models of
neuronal networks. Altogether, these results uncover some universal mechanisms
supporting a regularizing impact of noise in excitable systems, reveal a novel
anti-resonance phenomenon in these systems, and propose a new hypothesis for
the efficiency of high-frequency stimulation in Parkinson's disease
Emotional engagements predict and enhance social cognition in young chimpanzees
Social cognition in infancy is evident in coordinated triadic engagements, that is, infants attending jointly with social partners and objects. Current evolutionary theories of primate social cognition tend to highlight species differences in cognition based on human-unique cooperative motives. We consider a developmental model in which engagement experiences produce differential outcomes. We conducted a 10-year-long study in which two groups of laboratory-raised chimpanzee infants were given quantifiably different engagement experiences. Joint attention, cooperativeness, affect, and different levels of cognition were measured in 5- to 12-month-old chimpanzees, and compared to outcomes derived from a normative human database. We found that joint attention skills significantly improved across development for all infants, but by 12 months, the humans significantly surpassed the chimpanzees. We found that cooperativeness was stable in the humans, but by 12 months, the chimpanzee group given enriched engagement experiences significantly surpassed the humans. Past engagement experiences and concurrent affect were significant unique predictors of both joint attention and cooperativeness in 5- to 12-month-old chimpanzees. When engagement experiences and concurrent affect were statistically controlled, joint attention and cooperation were not associated. We explain differential social cognition outcomes in terms of the significant influences of previous engagement experiences and affect, in addition to cognition. Our study highlights developmental processes that underpin the emergence of social cognition in support of evolutionary continuity
Chimpanzee hand preference for throwing and infant cradling:implications for the origin of human handedness
Monte Carlo simulation of melting transition on DNA nanocompartment
DNA nanocompartment is a typical DNA-based machine whose function is
dependent of molecular collective effect. Fundamental properties of the device
have been addressed via electrochemical analysis, fluorescent microscopy, and
atomic force microscopy. Interesting and novel phenomena emerged during the
switching of the device. We have found that DNAs in this system exhibit a much
steep melting transition compared to ones in bulk solution or conventional DNA
array. To achieve an understanding to this discrepancy, we introduced DNA-DNA
interaction potential to the conventional Ising-like Zimm-Bragg theory and
Peyrard-Bishop model of DNA melting. To avoid unrealistic numerical calculation
caused by modification of the Peyrard-Bishop nonlinear Hamiltonian with the
DNA-DNA interaction, we established coarse-gained Monte Carlo recursion
relations by elucidation of five components of energy change during melting
transition. The result suggests that DNA-DNA interaction potential accounts for
the observed steep transition.Comment: 12 pages, 5 figure
Abundances of Baade's Window Giants from Keck/HIRES Spectra: I. Stellar Parameters and [Fe/H] Values
We present the first results of a new abundance survey of the Milky Way bulge
based on Keck/HIRES spectra of 27 K-giants in the Baade's Window (, ) field. The spectral data used in this study are of much higher resolution
and signal-to-noise than previous optical studies of Galactic bulge stars. The
[Fe/H] values of our stars, which range between -1.29 and , were used to
recalibrate large low resolution surveys of bulge stars. Our best value for the
mean [Fe/H] of the bulge is . This mean value is similar to the
mean metallicity of the local disk and indicates that there cannot be a strong
metallicity gradient inside the solar circle. The metallicity distribution of
stars confirms that the bulge does not suffer from the so-called ``G-dwarf''
problem. This paper also details the new abundance techniques necessary to
analyze very metal-rich K-giants, including a new Fe line list and regions of
low blanketing for continuum identification.Comment: Accepted for publication in January 2006 Astrophysical Journal. Long
tables 3--6 withheld to save space (electronic tables in journal paper). 53
pages, 10 figures, 9 table
YF-17/ADEN system study
The YF-17 aircraft was evaluated as a candidate nonaxisymmetric nozzle flight demonstrator. Configuration design modifications, control system design, flight performance assessment, and program plan and cost we are summarized. Two aircraft configurations were studied. The first was modified as required to install only the augmented deflector exhaust nozzle (ADEN). The second one added a canard installation to take advantage of the full (up to 20 deg) nozzle vectoring capability. Results indicate that: (1) the program is feasible and can be accomplished at reasonable cost and low risk; (2) installation of ADEN increases the aircraft weight by 600 kg (1325 lb); (3) the control system can be modified to accomplish direct lift, pointing capability, variable static margin and deceleration modes of operation; (4) unvectored thrust-minus-drag is similar to the baseline YF-17; and (5) vectoring does not improve maneuvering performance. However, some potential benefits in direct lift, aircraft pointing, handling at low dynamic pressure and takeoff/landing ground roll are available. A 27 month program with 12 months of flight test is envisioned, with the cost estimated to be 13.2 million for the version without canard. The feasiblity of adding a thrust reverser to the YF-17/ADEN was investigated
- …
