87 research outputs found

    Reliability of the tuck jump injury risk screening assessment in elite male youth soccer players

    Get PDF
    Altered neuromuscular control has been suggested as a mechanism for injury in soccer players. Ligamentous injuries most often occur during dynamic movements, such as decelerations from jump-landing maneuvers where high risk movement patterns are present. The assessment of kinematic variables during jump-landing tasks as part of a pre-participation screen is useful in the identification of injury risk. An example of a field-based screening tool is the repeated tuck jump assessment. The purpose of this study was to analyze the within-subject variation of the tuck jump screening assessment in elite male youth soccer players. 25 pre and 25 post-peak height velocity (PHV) elite male youth soccer players from the academy of a professional English soccer club completed the assessment. A test, re-test design was used to explore the within-subject inter-session reliability. Technique was graded retrospectively against the 10-point criteria set out in the screening protocol using two-dimensional video cameras. The typical error range reported for tuck jump total score (0.90 – 1.01 in pre and post-PHV players respectively) was considered acceptable. When each criteria was analyzed individually, Kappa coefficient determined that knee valgus was the only criterion to reach substantial agreement across the two test sessions for both groups. The results of this study suggest that although tuck jump total score may be reliably assessed in elite male youth soccer players, caution should be applied in solely interpreting the composite score due to the high within-subject variation in a number of the individual criteria. Knee valgus may be reliably used to screen elite youth male soccer players for this plyometric technique error and for test, re-test comparison

    Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial

    Get PDF
    Background. Osteochondral talar defects usually affect athletic patients. The primary surgical treatment consists of arthroscopic debridement and microfracturing. Although this is mostly successful, early sport resumption is difficult to achieve, and it can take up to one year to obtain clinical improvement. Pulsed electromagnetic fields (PEMFs) may be effective for talar defects after arthroscopic treatment by promoting tissue healing, suppressing inflammation, and relieving pain. We hypothesize that PEMF-treatment compared to sham-treatment after arthroscopy will lead to earlier resumption of sports, and aim at 25% increase in patients that resume sports. Methods/Design. A prospective, double-blind, randomized, placebo-controlled trial (RCT) will be conducted in five centers throughout the Netherlands and Belgium. 68 patients will be randomized to either active PEMF-treatment or sham-treatment for 60 days, four hours daily. They will be followed-up for one year. The combined primary outcome measures are (a) the percentage of patients that resume and maintain sports, and (b) the time to resumption of sports, defined by the Ankle Activity Score. Secondary outcome measures include resumption of work, subjective and objective scoring systems (American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale, Foot Ankle Outcome Score, Numeric Rating Scales of pain and satisfaction, EuroQol-5D), and computed tomography. Time to resumption of sports will be analyzed using Kaplan-Meier curves and log-rank tests. Discussion. This trial will provide level-1 evidence on the effectiveness of PEMFs in the management of osteochondral ankle lesions after arthroscopy. Trial registration. Netherlands Trial Register (NTR1636)

    Neuromuscular Retraining in Female Adolescent Athletes: Effect on Athletic Performance Indices and Noncontact Anterior Cruciate Ligament Injury Rates

    No full text
    While many anterior cruciate ligament (ACL) prevention programs have been published, few have achieved significant reductions in injury rates and improvements in athletic performance indices; both of which may increase compliance and motivation of athletes to participate. A supervised neuromuscular retraining program (18 sessions) was developed, aimed at achieving both of these objectives. The changes in neuromuscular indices were measured after training in 1000 female athletes aged 13–18 years, and the noncontact ACL injury rate in 700 of these trained athletes was compared with that of 1120 control athletes. There were significant improvements in the drop-jump test, (p < 0.0001, effect size [ES] 0.97), the single-leg triple crossover hop (p < 0.0001, ES 0.47), the t-test (p < 0.0001, ES 0.64), the multi-stage fitness test (p < 0.0001, ES 0.57), hamstring strength (p < 0.0001), and quadriceps strength (p < 0.01). The trained athletes had a significant reduction in the noncontact ACL injury incidence rate compared with the controls (1 ACL injury in 36,724 athlete-exposures [0.03] and 13 ACL injuries in 61,244 exposures [0.21], respectively, p = 0.03). The neuromuscular retraining program was effective in reducing noncontact ACL injury rate and improving athletic performance indicators
    • …
    corecore