1,053 research outputs found
Re-scheduling in railways: the rolling stock balancing problem
This paper addresses the Rolling Stock Balancing Problem (RSBP). This problem arises at a passenger railway operator when the rolling stock has to be re-scheduled due to changing circumstances. These problems arise both in the planning process and during operations. The RSBP has as input a timetable and a rolling stock schedule where the allocation of the rolling stock among the stations does not fit to the allocation before and after the planning period. The problem is then to correct these off-balances, leading to a modified schedule that can be implemented in practice.For practical usage of solution approaches for the RSBP, it is important to solve the problem quickly. Therefore, the focus is on heuristic approaches. In this paper, we describe two heuristics and compare them with each other on some (variants of) real-life instances of NS, the main Dutch passenger railway operator. Finally, to get some insight in the quality of the proposed heuristics, we also compare their outcomes with optimal solutions obtained by solving existing rolling stock circulation models.heuristics;railway planning;integer linear programming;rolling stock re-scheduling
Environmental conditions of a salt-marsh biodiversity experiment on the island of Spiekeroog (Germany)
Field experiments investigating biodiversity and ecosystem functioning require the observation of abiotic parameters, especially when carried out in the intertidal zone. An experiment for biodiversity–ecosystem functioning was set up in the intertidal zone of the back-barrier salt marsh of Spiekeroog Island in the German Bight. Here, we report the accompanying instrumentation, maintenance, data acquisition, data handling and data quality control as well as monitoring results observed over a continuous period from September 2014 to April 2017. Time series of abiotic conditions were measured at several sites in the vicinity of newly built experimental salt-marsh islands on the tidal flat. Meteorological measurements were conducted from a weather station (WS, https://doi.org/10.1594/PANGAEA.870988), oceanographic conditions were sampled through a bottom-mounted recording current meter (RCM, https://doi.org/10.1594/PANGAEA.877265) and a bottom-mounted tide and wave recorder (TWR, https://doi.org/10.1594/PANGAEA.877258). Tide data are essential in calculating flooding duration and flooding frequency with respect to different salt-marsh elevation zones. Data loggers (DL) for measuring the water level (DL-W, https://doi.org/10.1594/PANGAEA.877267), temperature (DL-T, https://doi.org/10.1594/PANGAEA.877257), light intensity (DL-L, https://doi.org/10.1594/PANGAEA.877256) and conductivity (DL-C, https://doi.org/10.1594/PANGAEA.877266) were deployed at different elevational zones on the experimental islands and the investigated salt-marsh plots. A data availability of 80% for 17 out of 23 sensors was achieved. Results showed the influence of seasonal and tidal dynamics on the experimental islands. Nearby salt-marsh plots exhibited some differences, e.g., in temperature dynamics. Thus, a consistent, multi-parameter, long-term dataset is available as a basis for further biodiversity and ecosystem functioning studies
Scheduling preventive railway maintenance activities
A railway system needs a substantial amount of maintenance. To
prevent unexpected breakdowns as much as possible, preventive
maintenance is required. In this paper we discuss the Preventive
Maintenance Scheduling Problem (PMSP), where (short) routine
activities and (long) unique projects have to be scheduled in a
certain period. To reduce costs and inconvenience for the
travellers and operators, these activities have to be scheduled as
much as possible together. We present a mathematical formulation
for this problem and some greedy heuristics to solve it fast.
Moreover, we compare the performance of these heuristics with the
optimal solution using some randomly generated instances
Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms
Electrochemical insertion-deintercalation reactions are typically associated
with significant change of molar volume of the host compound. This strong
coupling between ionic currents and strains underpins image formation
mechanisms in electrochemical strain microscopy (ESM), and allows exploring the
tip-induced electrochemical processes locally. Here we analyze the signal
formation mechanism in ESM, and develop the analytical description of operation
in frequency and time domains. The ESM spectroscopic modes are compared to
classical electrochemical methods including potentiostatic and galvanostatic
intermittent titration (PITT and GITT), and electrochemical impedance
spectroscopy (EIS). This analysis illustrates the feasibility of spatially
resolved studies of Li-ion dynamics on the sub-10 nanometer level using
electromechanical detection.Comment: 49 pages, 17 figures, 4 tables, 3 appendices, to be submitted to J.
Appl. Phys
Epitaxial film growth and magnetic properties of Co_2FeSi
We have grown thin films of the Heusler compound Co_2FeSi by RF magnetron
sputtering. On (100)-oriented MgO substrates we find fully epitaxial
(100)-oriented and L2_1 ordered growth. On Al_2O_3 (11-20) substrates, the film
growth is (110)-oriented, and several in-plane epitaxial domains are observed.
The temperature dependence of the electrical resistivity shows a power law with
an exponent of 7/2 at low temperatures. Investigation of the bulk magnetic
properties reveals an extrapolated saturation magnetization of 5.0 mu_B/fu at 0
K. The films on Al_2O_3 show an in-plane uniaxial anisotropy, while the
epitaxial films are magnetically isotropic in the plane. Measurements of the
X-ray magnetic circular dichroism of the films allowed us to determine element
specific magnetic moments. Finally we have measured the spin polarization at
the surface region by spin-resolved near-threshold photoemission and found it
strongly reduced in contrast to the expected bulk value of 100%. Possible
reasons for the reduced magnetization are discussed.Comment: 9 pages, 12 figure
Re-scheduling in railways: the rolling stock balancing problem
This paper addresses the Rolling Stock Balancing Problem (RSBP). This problem arises at a passenger railway operator when the rolling stock has to be re-scheduled due to changing circumstances. These problems arise both in the planning process and during operations.
The RSBP has as input a timetable and a rolling stock schedule where the allocation of the rolling stock among the stations does not fit to the allocation before and after the planning period. The problem is then to correct these off-balances, leading to a modified schedule that can be implemented in practice.
For practical usage of solution approaches for the RSBP, it is important to solve the problem quickly. Therefore, the focus is on heuristic approaches. In this paper, we describe two heuristics and compare them with each other on some (variants of) real-life instances of NS, the main Dutch passenger railway operator. Finally, to get some insight in the quality of the proposed heuristics, we also compare their outcomes with optimal solutions obtained by solving existing rolling stock circulation models
Diagramming social practice theory:An interdisciplinary experiment exploring practices as networks
Achieving a transition to a low-carbon energy system is now widely recognised as a key challenge facing humanity. To date, the vast majority of research addressing this challenge has been conducted within the disciplines of science, engineering and economics utilising quantitative and modelling techniques. However, there is growing awareness that meeting energy challenges requires fundamentally socio-technical solutions and that the social sciences have an important role to play. This is an interdisciplinary challenge but, to date, there remain very few explorations of, or reflections on, interdisciplinary energy research in practice. This paper seeks to change that by reporting on an interdisciplinary experiment to build new models of energy demand on the basis of cutting-edge social science understandings. The process encouraged the social scientists to communicate their ideas more simply, whilst allowing engineers to think critically about the embedded assumptions in their models in relation to society and social change. To do this, the paper uses a particular set of theoretical approaches to energy use behaviour known collectively as social practice theory (SPT) - and explores the potential of more quantitative forms of network analysis to provide a formal framework by means of which to diagram and visualize practices. The aim of this is to gain insight into the relationships between the elements of a practice, so increasing the ultimate understanding of how practices operate. Graphs of practice networks are populated based on new empirical data drawn from a survey of different types (or variants) of laundry practice. The resulting practice networks are analysed to reveal characteristics of elements and variants of practice, such as which elements could be considered core to the practice, or how elements between variants overlap, or can be shared. This promises insights into energy intensity, flexibility and the rootedness of practices (i.e. how entrenched/ established they are) and so opens up new questions and possibilities for intervention. The novelty of this approach is that it allows practice data to be represented graphically using a quantitative format without being overly reductive. Its usefulness is that it is readily applied to large datasets, provides the capacity to interpret social practices in new ways, and serves to open up potential links with energy modeling. More broadly, a significant dimension of novelty has been the interdisciplinary approach, radically different to that normally seen in energy research. This paper is relevant to a broad audience of social scientists and engineers interested in integrating social practices with energy engineering
High energy, high resolution photoelectron spectroscopy of Co2Mn(1-x)Fe(x)Si
This work reports on high resolution photoelectron spectroscopy for the
valence band of Co2Mn(1-x)Fe(x)Si (x=0,0.5,1) excited by photons of about 8 keV
energy. The measurements show a good agreement to calculations of the
electronic structure using the LDA+U scheme. It is shown that the high energy
spectra reveal the bulk electronic structure better compared to low energy XPS
spectra. The high resolution measurements of the valence band close to the
Fermi energy indicate the existence of the gap in the minority states for all
three alloys.Comment: 14 pages, 5 figures, submitted to J. Phys. D: Appl. Phy
Biophysical Modeling of Mangrove Seedling Establishment and Survival Across an Elevation Gradient With Forest Zones
Mangrove forest development critically depends on the establishment and survival of seedlings. Mechanistic insights into how water levels, waves and bed level dynamics influence the establishment process of individual mangrove seedlings are increasing. However, little is known about how spatial and temporal changes in water levels, waves and bed level dynamics across elevation gradients in mangrove forests facilitate/limit seedling dynamics. For this study, a new seedling establishment and growth model was integrated into a process-based hydrodynamic and morphodynamic numerical model. This biophysical model was applied to a fringing mangrove forest located in the southern Firth of Thames, Aotearoa, New Zealand. This study quantifies the increasing establishment density and survival probability of mangrove seedlings from the lower-elevated unvegetated intertidal flat toward the higher-elevated mature mangrove forest. Three cross-shore zones with distinctive seedling dynamics were identified: (a) a zone with daily tidal inundation where seedling dynamics are episodic and limited by the dispersal of individual propagules that rapidly anchor to the substrate by root growth, (b) a zone with daily to bi-weekly tidal inundation where seedling dynamics respond to variations in spring-neap tidal cycles and, (c) a zone with less than bi-weekly inundation where seedling dynamics are governed by high propagule supply and seedling survival probability. The seedling establishment density and survival probability are dominated by annual extremes in tidal hydroperiod and bed shear stresses, respectively. The obtained parameterizations can be used to incorporate seedling dynamics in decadal-timescale mangrove forest development models that are instrumental for mangrove management and restoration
- …