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Abstract

This paper addresses the Rolling Stock Balancing Problem (RSBP). This
problem arises at a passenger railway operator when the rolling stock has to
be re-scheduled due to changing circumstances. These problems arise both
in the planning process and during operations.

The RSBP has as input a timetable and a rolling stock schedule where the
allocation of the rolling stock among the stations does not fit to the allocation
before and after the planning period. The problem is then to correct these
off-balances, leading to a modified schedule that can be implemented in
practice.

For practical usage of solution approaches for the RSBP, it is impor-
tant to solve the problem quickly. Therefore, the focus is on heuristic ap-
proaches. In this paper, we describe two heuristics and compare them with
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each other on some (variants of) real-life instances of NS, the main Dutch
passenger railway operator. Finally, to get some insight in the quality of the
proposed heuristics, we also compare their outcomes with optimal solutions
obtained by solving existing rolling stock circulation models.

Keywords: railway planning, rolling stock re-scheduling, integer linear pro-
gramming, heuristics.

1 Introduction

The rolling stock planning process of most railway operators is commonly divided
into several planning phases. Huisman et al. (2005) distinguish four planning
phases, namely strategic, tactical, operational and short-term planning. Strategic
planning deals with long term decisions such as the acquisition of new rolling
stock. At the tactical level, the different types of rolling stock are assigned to the
different lines of the network. This is typically done once a year. The main goal of
operational planning is to find rolling stock schedules with low operational costs
and high service quality; this basic schedule is to be carried out throughout the
whole year. However, every day there are minor modifications to the timetable
due to some extra trains or maintenance work on some parts of the infrastructure.
These exceptions are handled during the short-term planning phase. The time
horizon of short-term planning ranges from a couple of days to a couple of weeks.
The final plans are carried out (and modified if necessary) in real-time operations.

This paper deals with the Rolling Stock Balancing Problem (RSBP), which is
a problem faced in the short-term planning phase as well as during the operations.
The input consists of the timetable for a given planning period, the available rol-
ling stock, the desired inventories and an input rolling stock schedule, which is
feasible except that it may contain some off-balances. An off-balance is defined
as a deviation from the desired inventory level of a certain type of rolling stock
at a certain station. The goal is to construct a new rolling stock schedule that
satisfies the balancing constraints as much as possible. Therefore, the primary
objective is to minimize the number of off-balances (i.e. the deviation from the
desired inventories). As secondary objective, other criteria related to costs and
service may be optimized as well.
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To better understand the motivation for studying this problem, we first give
some background information on rolling stock planning at NS, the main passenger
railway operator in the Netherlands.

At NS, most trains are operated by self-propelled train units, and only a few
are operated by a locomotive and carriages. Therefore, we will only consider
train units in the remainder of this paper. These train units are available in several
types. Units of compatible types can be attached to each other to form longer
compositions. Units of the same type are fully interchangeable, since individual
units are not distinguished during the planning phase.

The rolling stock schedule specifies the train composition of each train trip.
That is, how many units of each type are to be used for each timetable service
and in which order. From this assignment, one can obtain the duties. A duty
is the workload of a single rolling stock unit on a single day: it is a chain of
tasks where a task is characterized by a trip and by the position of the unit in the
composition of this trip, e.g. front or rear. The practical feasibility of a schedule
highly depends on the shunting possibilities of the stations. Since shunting is a
complex problem on its own (see e.g. Freling et al. (2005), Lentink (2006)), NS
uses an iterative approach. First, rolling stock duties are determined. Afterwards,
when the whole set of duties leads to infeasibility at certain stations, the duties
are modified. This process continues until there is an overall feasible solution.
In practice, this may take several rounds. To speed up this process, several key
aspects of the shunting process are taken into account during the creation of the
rolling stock schedules. Examples are the restrictions on composition changes
at certain stations: uncoupling (or coupling) of units can only take place at the
appropriate side of the train.

During the whole planning process, i.e. in operational and short-term planning,
the process above is applied. The difference between both planning phases is that
the time available to come up with a solution is much higher in the operational
phase. This throughput time is even more relevant for large-scale re-scheduling
problems during the real-time operations, for instance due to major disruptions.

In recent years, NS introduced Operations Research based decision support
tools for operational planning (see Alfieri et al. (2006), Fioole et al. (2006), Maróti
(2006) and Peeters and Kroon (2003)). However, the running time of these meth-
ods may reach several hours on instances that are smaller than typical re-scheduling
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instances. Thus the restrictive deadlines in re-scheduling raise the need for alter-
native approaches. Moreover, discussions with planners revealed that it is usually
easy to come up with a schedule that fulfills all requirements except that the de-
sired inventories are not realized. This was our first motivation to study the RSBP.

A second motivation finds its background in disruption management (see Jes-
persen Groth et al. (2007)). During a disruption, the dispatchers try to use all
available rolling stock to transport as many passengers as possible in the right
direction. As a result, the rolling stock units will not finish their daily duties at the
location where they were planned to. This is not a problem if two units of the same
type get switched. In many cases, however, the number of units ending up in the
evening at a certain station differs from the number of units that has to start their
next day’s duty there. To prevent expensive deadheading trips, it is attractive to
modify the rolling stock schedules such that the rolling stock is balanced before
the night. This problem is equivalent to the RSBP in the planning phase, the
only difference is that the initial input plan is not constructed by planners but is
accidentally born.

In this paper we describe the Rolling Stock Balancing Problem. Although
the motivating problems arise at NS, we believe that similar problems are to be
solved whenever trains between multiple depots are operated with train units of
multiple types. To the best of our knowledge, the RSBP has not been studied
before. However, ideas of several related problems can be used, therefore we give
a brief literature overview on these related problems.

We analyze the computational complexity of RSBP and we prove that even its
simple special cases are NP-hard; this fact, together with the need for fast solu-
tion approaches, has decided us to focus on heuristics. We present two heuristics
solution approaches. The heuristics are compared with each other on (variants of)
real-life problem instances of NS. Moreover, to get some insight in the quality of
the heuristics, we also compare the outcomes with the results of an existing model
for operational rolling stock planning from scratch.

The remainder of this paper is organized as follows. In Section 2 we give a
precise description of the RSBP. Section 3 contains a brief literature overview.
Section 4 is devoted to complexity results. The heuristics are described in Sec-
tions 5 and 6. The computational results are discussed in Section 7. Finally, in
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Section 8 we draw some conclusions and we outline some directions for future
work.

2 Problem description

In this section we define the Rolling Stock Balancing Problem in more detail. We
are given the timetable for the planning period. The timetable defines a set of trips,
which are characterized by the train number, departure and arrival times, departure
and arrival locations as well as the estimated number of passengers. Moreover, we
have a list of available rolling stock types and the number of available units per
type.

For each station, the desired initial inventory is the number of units per type
that arrive there before the planning period. The desired final inventory is the
number of units per type that are needed there after the planning period. The de-
sired inventories link the output of the balancing problem to what happens before
and after the planning period.

Each trip (except for arrivals in the late evening) has a successor trip; a trip
and its successor trip are to be operated in principle by the same rolling stock
units. A trip is followed shortly (within at most an hour, usually within minutes)
by its successor trip, this leaves only time for restricted composition changes:
One or two units can be coupled to the arriving train or uncoupled from it, before
departing again. A general rule states that coupling and uncoupling cannot be
performed at the same time. These composition changes may take place on a
pre-defined side of the train: either on the front side or on the rear side. Train
units uncoupled from a train are not immediately available yet, only a certain
re-allocation time later; this is to reserve time for necessary shunting operations
before using the uncoupled unit in another train.

Next we need the concept of the inventory. The inventory of a station at a
given time moment is formed by the units that are currently staying idle at that
station. These units can be coupled to a departing train, while uncoupled units
go to the inventory. It is vital to see that the order of the units in the inventory is
arbitrary; this is in contrast with the trains themselves where the order of the units
is essential.
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Finally, we are given an input rolling stock schedule which assigns a compo-
sition to each trip; the input schedule satisfies all technical requirements above.
The following requirements must also hold: the length of the composition on a
trip must be under a certain limit (determined by the relevant platform lengths).
Moreover, the trip has to be assigned at least a given number of carriages in order
to cover (at least a large part of) the passenger demand.

The input schedule may not comply with the desired inventories. A station has
a deficit (or a surplus) in the initial inventory of a given type if, according to the
input plan, the number of units of this type that are located at the beginning of the
planning period at that station is higher (or lower) than the desired initial inventory
of this type. Similarly, a station has a deficit (or a surplus) in the final inventory of
a given type if according to the input plan, the desired final inventory of this type
is higher (or lower) than the number of units of this type that are located at the end
of the planning period at that station in the input plan. The number of off-balances
in a rolling stock schedule is obtained by summing the surpluses over all stations
and over all types. This number expresses how many units have to be involved in
dead-heading trips.

The Rolling Stock Balancing Problem (RSBP) can now formally be defined as
the problem of modifying the input rolling stock schedule to a new schedule such
that (1) the new schedule is still feasible, and (2) it contains a minimum number
of off-balances. Next to minimizing the number of off-balances, secondary objec-
tives related to costs and service can be taken into account. In the experiments, we
choose for an objective function which is a linear combination of the number of
off-balances (with a very high weight), carriage-kilometers, shortage-kilometers
and the number of composition changes. Carriage-kilometers express the oper-
ational costs of the railway operator. Seat shortage kilometers are computed by
taking the expected number of passengers without a seat on a trip, multiplying it
by the length of the trip and adding them up over all trips; the obtained value cor-
responds to the service quality. The number of composition changes counts how
many times units are coupled to or uncoupled from a train during a short stop.
A schedule with a smaller number of composition changes is expected to be less
sensitive to small delays.

The planning period may consist of several days. Then it is common to allow
dead-heading trips every night during the planning period. The RSBP and the
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solution methods suggested in this paper can easily be extended to such cases. In
fact, we carried out some computational tests on instances with a 2-day planning
period.

3 Literature overview

A large number of publications addressed operational rolling stock planning. We
only mention here Peeters and Kroon (2003) and Fioole et al. (2006). Their mod-
els have basically the same specifications as those in this paper. In the case when
trains are not combined or split, Peeters and Kroon (2003) solve the problem by
applying Dantzig-Wolfe decomposition and Branch-and-Price as solution tech-
nique. Fioole et al. (2006) extend the model for splitting and combining of trains.
They use the commercial MIP software CPLEX to solve the model.

Compared to operational planning, literature on short-term railway rolling
stock planning is scarce. Ben-Khedher et al. (1998) study the short-term re-
scheduling problem of the French TGV trains from a revenue management’s point
of view. The rolling stock circulation must be adjusted to the latest demand from
the seat reservation system in order to maximize the expected profit. Shunting is
not really an issue since trains may consist of at most two units.

Lingaya et al. (2002) deal with the effect of an altered timetable and passenger
demand on the rolling stock schedules, focusing on the case of locomotive hauled
carriages. They explicitly take the order of the carriages in the trains into account
and assume that for each train a successor train has already been specified. Several
real-life aspects, such as maintenance, are considered as well.

Substantial research has been carried out on aircraft and bus re-scheduling.
Kohl et al. (2004) and Clausen et al. (2005) give overviews of airline disruption
management, including a detailed list of aircraft re-scheduling publications and
applications. The common solution approaches are based on multicommodity
network flows, applying various exact and heuristic methods. Many of the models
incorporate maintenance of the aircraft as well.

Recently, Li et al. (2004) introduced the single depot vehicle re-scheduling
problem. It is motivated by the problem of updating bus schedules in the case
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when a single vehicle breaks down. The re-scheduling problem is formulated as a
minimization problem over a number of vehicle scheduling problems.

A main distinguishing feature of railway (re-)scheduling is that the order of
the train units in the trains is to be regarded when they are attached to each other.
In contrast, a single bus or aircraft is to be used for a flight or a bus trip. Also,
strict airline maintenance regulations make it necessary to follow the path of each
individual aircraft during the entire planning period. In railway re-scheduling,
however, preventive maintenance is less binding, therefore train units of the same
type can be considered interchangeable.

We conclude that although a large variety of related problems has been de-
scribed and partly successfully solved, railway rolling stock scheduling – in par-
ticular in real-time operations – still lacks the appropriate models and solution
methods.

4 Complexity results

In this section we prove that it is NP-complete to decide whether an instance of
the Rolling Stock Balancing Problem has a feasible solution, even if only a single
station has a surplus in the final inventory and another station has a deficit in the
final inventory. Subsequently, we extend the construction in the proof and show
that the problem remains NP-complete in the case of an off-balance of a single
unit.

In the constructions below, there are two rolling stock types P and Q which
can be combined with each other in one train. Each trip must receive one or two
units. The compositions are denoted by strings of the characters P and Q, the
right hand side of a string corresponding to the front of the train. The shunting
side of the stations, either left or right, is indicated by [L] and [R], respectively.
Stations with right hand shunting side admit composition changes at the front of
a train, while stations with left hand shunting side admit composition changes at
the rear of a train.

Throughout the whole section, the railway networks are drawn in time-space
diagrams: Stations are represented by horizontal time-lines, the time increases to
the right. The trips correspond to diagonal lines between the time-lines. Train
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stops are indicated by dots. Dotted arcs connect the arrivals of the trips to the
departures of their successors.

In the figures, some trips do not have a departure or arrival station. These
missing anonymous stations are all different. Trips to or from anonymous stations
always have a single unit of a certain type in the input plan. Anonymous stations
with a departing trip have initial inventory 1 for this type and 0 for the other
type; the final inventory is 0 for both types. The analogous condition holds for
anonymous stations with an arriving trip: the initial inventories are 0, the final
inventory is 1 for the type of the arriving unit and 0 for the other type.

In the input plan, trips are operated by a single unit of type P (in the figures
represented by thick solid lines), by a single unit of type Q (thick dotted lines) or
by a two-unit composition PP (thick dashed lines).

4.1 Building blocks for the proofs: the gadgets

A gadget is a part of the railway network shown in Figure 1. The figure indicates
the 8 named stations, their shunting sides, the trips (among them trips s1, s2, t1

and t2), and their compositions in the input plan.
The initial and final inventories of stations β, γ, δ and ε are 0. Stations α1, α2,

ω1 and ω2 have undefined initial and final inventories in type P and they have zero
initial and final inventory in type Q.

α1 [R]

α2 [R]

β [L]

γ [R]

δ [L]

ε [R]

ω1 [R]

ω2 [R]

s1

s2

t1
t2

Input plan:
P

Q

Figure 1: A gadget.

Lemma 4.1. Consider a rolling stock circulation for a gadget that satisfies the
given inventory, shunting and train length constraints. Then the following holds:

(i) Trip s1 has composition PP if and only if trip t1 has composition PP .
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(ii) Trip s2 has composition PP if and only if trip t2 has composition PP .

(iii) At most one of the trips t1 and t2 can have composition PP .

Proof. (i) If trip s1 has composition PP , then a unit can be uncoupled from it at
station γ. This unit can be coupled to the right-hand side of the unit that travels
from γ towards ε. Then the unit of type P can only be uncoupled at station ε.
Actually, this is the only possibility to lead the uncoupled unit to either ω1 or ω2.
Moreover, this is the only way to get composition PP for trip t1.
(ii) Similar to (i).
(iii) Two extra units of type P can reach stations ω1 and ω2 only if the trip between
γ and δ has composition PQP . However, this would violate the upper bound on
the train length.

We use the simplified symbol in Figure 2 for a gadget. The main purpose of
a gadget is to bring an additional unit either from α1 to ω1, or from α2 to ω2, but
not both.

α1

α2

ω1

ω2

s1

s2

t1

t2

Figure 2: A simple symbol for a gadget.

4.2 Resolving an off-balance of k units

Consider an undirected graph G = (V, E) with V = {1, . . . , n} and let k be a
positive integer with k ≤ n. We build an instance of RSBP that is feasible if and
only if G contains a stable set of size k. A stable set is a subset of nodes such
that no pair of them is joined by an edge. It is well known that deciding whether
a graph has a stable set with k nodes is NP-complete (Karp (1972)).

Create two stations A and Z. For every node v ∈ V with dv neighbors, we
create dv + 1 stations Sv

1 , . . . , S
v
dv+1. The shunting side of all these stations is [R].

For each v ∈ V , insert a trip from station A to station Sv
1 and insert a trip

from station Sv
dv+1 to station Z. For each trip from A to a station Sv

1 , create a
predecessor trip from an anonymous station to A. For each trip arriving at Z,
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insert a successor from Z to an anonymous station. All trips so far are operated
with a single unit of type P in the input plan.

For each node v ∈ V with neighbors u1, . . . , udv , assign stations Sv
1 , . . . , S

v
dv

to the edges u1v, . . . , udvv, bijectively in an arbitrary way. For each edge uv ∈ E

with u < v, add a gadget as follows. Let Su
i and Sv

j be the stations assigned to
edge uv. Create four new stations β, γ, δ and ε, set α1 = Su

i , α2 = Sv
j , ω1 = Su

i+1,
ω2 = Sv

j+1 and insert all the trips described in the definition of a gadget. A station
Sv

j with 1 < j < dv + 1 belongs to exactly two gadgets and has one arriving and
one departing trip. The departing trip is the successor of the arriving trip.

This completes the railway network. Its size is polynomial in n: it contains
O(n2) trips between O(n2) stations. The network for a small graph is shown
schematically in Figure 3.

The input plan satisfies the following inventory constraints. The initial and
final inventories for type Q are 0 (except for some anonymous stations inside the
gadgets). For type P , the initial and final inventories of stations Sv

j are 0. Station
A has initial and final inventory k, while station Z has initial and final inventory
0. The initial and final inventories of the β-, γ-, δ- and ε-stations of the gadgets
are all zero.

The desired inventories differ from these at two points. The desired final in-
ventory of station A in type P is 0, the desired final inventory of station Z in type
P is k. In some sense, balancing means that k units of type P must be routed from
A to Z.

Note that the inventory and train length constraints do not leave much choice
for feasible rolling stock circulations. Each trip has either the same composition
as in the input plan or it receives the original composition extended by a single
unit of type P .

Theorem 4.2. Graph G = (V, E) contains a stable set of size k if and only if the
instance of RSBP constructed above has a feasible solution.

Proof. Suppose that G contains the stable set {v1, . . . , vk}. A solution of RSBP
can be obtained as follows. Couple the k units of type P at station A to the k trips
that depart towards stations Sv1

1 , . . . , Svk
1 .

Consider any gadget that connects stations Svi
j and Svi

j+1 for some indices i and
j. We adjust the input plan inside the gadget as follows. The trips of this gadget
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v1 v2

v3 v4

G = (V, E)

A

Z

Sv2

1

Sv1

1

Sv3

1

Sv2

2

Sv4

1

Sv2

3

Sv4

2

Sv2

4

Sv3

3

Sv1

3
Sv1

2

Sv3

2

v1 v2 v3 v4

Figure 3: An example of the construction of the network.

that are incident to stations Svi
j and Svi

j+1 get composition PP ; we also make all
the necessary modifications to route the additional unit through the gadget from
Svi

j to Svi
j+1. The adjustment of the gadgets can be done simultaneously since there

is no edge between the nodes v1, . . . , vk. Then all the k excess units reach station
Z where they can be uncoupled. Therefore, RSBP is feasible.

Conversely, consider a solution of the RSBP. At station A, k units of type P

are coupled to trips towards stations, say, Sv1
1 , . . . , Svk

1 . These units pass through
all gadgets that are related to the nodes v1, . . . , vk and end up at station Z. Then
the nodes v1, . . . , vk form a stable set in G as otherwise Lemma 4.1 (iii) would be
violated.

Corollary 4.3. The feasibility version of RSBP is NP-complete.

4.3 Resolving an off-balance of one unit

Here we extend the construction described in the previous section. Thereby we
prove that the maximum stable set problem can be reduced to RSBP with an off-
balance of one unit.

Let G = (V, E) be an undirected graph with |V | = n and let k be a positive
integer with k ≤ n. Consider the railway network constructed in the previous
section. It is represented in Figure 4 by stations A and Z and the gray box between
them.

Create k + 1 new stations α1, . . . , αk and ω. Insert 4k trips as follows (see
Figure 4). Create a trip from αi to αi+1 for each i = 1, . . . , k (where αk+1 = ω)
and insert their predecessors and successors from and to anonymous stations. Also
insert a trip that departs from station αi and returns to the same station and has no
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predecessor or successor. All these new trips are operated by a single unit of type
P in the input plan.

Insert k additional gadgets g1, . . . , gk. Let s
(i)
1 , s

(i)
2 , t

(i)
1 and t

(i)
2 denote the s1-,

s2-, t1- and t2-trips of gadget gi. For each i = 1, . . . , k, trips s
(i)
1 , s

(i)
2 , t

(i)
1 and t

(i)
2

(and their predecessor or successor trips from or to anonymous stations) connect
gadget gi to stations A, Z and αi as shown in Figure 4. The figure also indicates
the compositions on these trips in the input plan.

Input plan:
P

PP

A : [R]

Z : [R]

α1 : [R]

α2 : [R]

α3 : [R]

ω : [R]

g3

g2

g1

Figure 4: One unit to be routed (k = 3). At the beginning and the end of the
time-lines, we give the initial and final inventories of type P realized by the input
plan.

The railway network we constructed has polynomial size in n since it contains
O(n2) trips and O(n2) stations.

The initial and final inventories for units of type Q are 0 except for some
anonymous stations inside the gadgets. For type P , the initial inventory of station
A is k, at stations α1, . . . , αk it is 1 and at stations Z and ω it is 0. The final inven-
tory of stations A, Z and ω is 0, while at stations α1, . . . , αk it is 2. Anonymous
stations have initial and final inventory zero or one. All other stations (i.e. the β-,
γ-, ε- and δ-stations of the gadgets) have zero initial and final inventories.

The goal is to decrease the final inventory of station α1 in type P by one and
to increase the final inventory of station ω in type P by one.

Note that, as in the previous section, the shunting, inventory and train length
constraints restrict the possible rolling stock circulations a lot. Each trip must be
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assigned the same composition as in the input plan, eventually with a unit of type
P coupled or uncoupled at the appropriate side. In particular, the circulation of
the unit of type Q does not change at all.

Theorem 4.4. Graph G has a stable set of size k if and only if the input plan can
be modified to decrease the final inventory of α1 in type P by one and to increase
the final inventory of ω in type P by one.

Proof. To increase the final inventory at ω by one, the trip from αk to ω must get a
composition PP . Then the trip from αk returning to αk has no unit to serve unless
an extra unit arrives earlier from gadget gk. That is, trip s

(k)
1 from Z to gadget gk

and trip t
(k)
1 from gadget gk to αk must get composition PP , too. Then trip s

(k)
2

from A to gadget gk and trip t
(k)
2 from gadget gk to αk must get composition

P only. To correct the final inventory at αk, the trip from αk−1 to αk must get
composition PP . Repeating the argument, it follows that RSBP can be solved if
and only if all the k units that start at A can reach station Z. Invoking Theorem 4.2
completes the proof.

Corollary 4.5. The feasibility version of RSBP is NP-complete in the case of an
off-balance of a single unit.

5 A heuristic based on elementary balancing possi-
bilities

In this section we describe a two-phase heuristic approach for the Rolling Stock
Balancing Problem.

In Phase 1 we identify a number of “elementary” balancing possibilities (be-
low abbreviated as BP) in the input plan: how can one unit (or several units) be
sent from a station with a surplus to another station with a deficit such that the
rolling stock balance remains unchanged for all other stations. We restrict our-
selves to two kinds of BPs. In some of the BPs, the excess unit of a certain type is
coupled to a train and it will be uncoupled from the train once the station with a
deficit in that type is reached. Thus, the train length on some trips is increased. In
the second kind of BPs, the train length on some trips is decreased by removing
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one (or more) unit(s) of a certain type from a sequence of trips; the sequence starts
at a station with a deficit and ends at a station with a surplus in that type.

A cost value is assigned to each BP expressing how the weighted sum of the
carriage kilometers, shortage kilometers and shunting operations changes if the
BP is indeed used. Dead-heading trips are also considered to be BPs. These
correspond to unresolved off-balances, so their cost is defined as the penalty of an
off-balance.

Phase 2 selects some of the elementary BP computed in Phase 1 such that
carrying out these selected BPs leads to a new rolling stock schedule without off-
balances. Phase 2 minimizes the cost of the selected BPs and makes sure that they
do not interfere with each other. This is done by solving an integer linear program.

A BP may solve off-balances only at the beginning (or at the end) of the plan-
ning period, but may also connect a surplus at the beginning of the planning period
to a deficit at the end, or vice versa. In the latter cases, implementing that BP only
would mean that one unit more or one unit less is used than in the input plan.
Constraints in the model of Phase 2 make sure than the output rolling stock plan
uses the same number of units as the input plan does.

5.1 Phase 1: finding the balancing possibilities

Here we show a couple of examples for BPs; these can be found by applying
easy search algorithms on the input rolling stock plan. Many other BPs can be
computed using very similar ideas.

We consider a rolling stock type t, any pair (A, B) of stations where station A

has a surplus and station B has a deficit of type t, and any integer number k ≥ 1.
Moreover, we distinguish four cases depending on whether the initial or the final
inventories have the deficit and the surplus.

For these values t, A, B, k and for each of these four cases, a BP is an assign-
ment of new compositions to some of the trips such that in this new rolling stock
schedule, the surplus of type t at station A in the initial or final inventory is de-
creased by k, the deficit of type t at station B in the initial or final inventory is
decreased by k, and all other stations have unchanged inventories.

Figure 5(a) shows a BP where the train length on some trips is decreased. We
assume that station A has a surplus of type t and station B has a deficit of type
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Figure 5: Examples of balancing possibilities. The thick continuous line indicates
a duty of a unit of type t, the thick dashed line stays for a duty of a unit of type t′.

t, both in the final inventory. Suppose there is a sequence of trips that starts at
A, passes B and returns to A. Then the BP is to uncouple a unit (or eventually
several units) of type t from that trip of this sequence that arrives at B and this
unit remains idle at station B. This BP is only allowed if all the shunting rules
and the train length restrictions are satisfied.

Figure 5(b) shows an example where the BP increases the train length on some
trips. We assume that station A has a surplus of type t in the initial inventory and
station B has a deficit of type t in the final inventory. Suppose there is a sequence
of trips that starts at A and ends at B. Then the BP is to couple a unit (or eventually
several units) of type t to the first trip of this sequence and to uncouple it after the
last trip of the sequence. Of course, we only allow this BP if it complies with the
shunting rules and with the train length restrictions. Note that several sequences
of trips may provide ways to bring a unit of type t from A to B. Then each of
them corresponds to a distinct BP.

A similar pattern may also be useful if the following two conditions hold.
First, station A has a surplus of type t in the final inventory (instead of the initial
inventory). Second, a unit of type t stays idle in the input plan from the departure
time of the train from A to B till the end of the planning horizon. Under these
conditions, the unit of type t can simply be sent from station A to B, giving rise
to a BP.

A combination of the previous two BPs is shown in Figure 6. We assume that
station A has a surplus of type t and station B has a deficit of type t, both in the
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initial inventory. Suppose there is a sequence of trips that starts at B, passes A and
ends at B. Then a BP is to decrease the train length between B and A by a unit of
type t, and to couple a unit of type t at A to the train leaving towards C. Again,
this BP is only allowed if all the shunting rules and the train length restrictions are
satisfied on the sequence of trips from station B to C.

B

A

C

t′

t

B

A

C

t

t′

Figure 6: Combined balancing possibility. The thick continuous line indicates a
duty of a unit of type t, the thick dashed line represents a duty of a unit of type t′.

More complicated BPs arise when solving two off-balances for two different
train unit types at once. This can be done by switching two complete or partial
duties of the input plan. Such a BP is shown in Figure 7. Here we assume that
station A has a surplus of type t in the final inventory and station B has a deficit
of type t in the final inventory. Moreover, we assume that station B has a surplus
of type t′ and station A has a deficit of type t′, both in the final inventory. Suppose
there are two sequences of trips: the first from station A to A that is carried out by
a unit of type t, and the second sequence from station B to B that is carried out by
a unit of type t′. If these sequences have a common idle period at station Z, then
the units of type t and t′ may take over each other’s role from the meeting point
till the end of the planning period.
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t
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Z

B
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t

Figure 7: Switching two partial duties. The thick continuous line indicates a duty
of a unit of type t, the thick dashed line represents a duty of a unit of type t′.
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5.2 Phase 2: combining balancing possibilities

Once all BPs and their costs have been defined in Phase 1, the question remains
how to choose those BPs which have the lowest possible total cost and which lead
to a feasible solution to the RSBP. The answer to this question is given in Phase 2
of this heuristic algorithm.

Given a set of all BPs that were defined in Phase 1, we choose those BPs that
minimize the weighted sum of carriage kilometers, shortage kilometers, shunting
movements and number of dead-heading trips. The latter is equivalent with the
number of remaining off-balances.

Selecting several BPs may result in a conflict, e.g. by exceeding the maximal
allowed train lengths. To stay on the safe side, we allow for BPs to be selected
simultaneously only if each trip gets modified at most once. Thereby we make
sure that the selected BPs can be implemented in practice. A disadvantage of
doing so is that the solution space might be restricted too much: BPs that modify
the same trip may be used without conflicts.

The BPs with overall minimum cost are selected with the following integer
linear programming model. Let E be the set of all BPs, S be the set of all
stations, T be the set of train unit types and Trip be the set of all trips. Let
bbeg
s,t ∈ {0,±1,±2, . . . } and bend

s,t ∈ {0,±1,±2, . . . } denote the surplus or deficit
in the initial and final inventory of type t ∈ T on station s ∈ S; a positive value
indicates a deficit and a negative value indicates a surplus.

Let ce be the cost of e ∈ E. Furthermore, the BP e ∈ E increases the initial
(or final) inventory of type t ∈ T on station s ∈ S with dbeg

s,t,e (or dend
s,t,e) units. Note

that dbeg
s,t,e and dend

s,t,e may be negative. Γe denotes the list of modified trips by BP
e ∈ E.

For each BP e ∈ E, let xe be a binary decision variable expressing whether or
not e ∈ E is selected. Then the BP selection problem can now be formulated as
follows.

minimize
∑
e∈E

cexe (1)

s.t.
∑
e∈E

dbeg
s,t,exe = bbeg

s,t ∀s ∈ S,∀t ∈ T (2)
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∑
e∈E

dend
s,t,exe = bend

s,t ∀s ∈ S,∀t ∈ T (3)∑
e∈E : v∈Γe

xe ≤ 1, ∀v ∈ Trip (4)

xe ∈ {0, 1} ∀e ∈ E (5)

The objective minimizes the total costs of the selected BPs. At each station and
for each train unit type, the sum of the changes in the initial (or final) inventory is
equal to the deficit or surplus in the initial (or final) inventory. This is ensured by
constraints (2) (or (3)). Some BPs cannot be chosen together in the solution, since
they use the same trip. This is expressed by constraints (4). Finally, constraints
(5) state that the decision variables are binary.

In our computations, it turned out to be essential to strengthen the model by
adding the following valid inequalities:∑

e∈E:d
beg
s,t,e>0

xe ≥ 1 ∀s ∈ S,∀t ∈ T : bbeg
s,t > 0. (6)

These constraints state that, if a station has a deficit in the initial inventory in a
given type, then at least one BP is selected which increases the initial inventory
of that type at that station. Furthermore, inequalities similar to (6) but bbeg

s,t > 0

replaced by bbeg
s,t < 0, bend

s,t > 0 and bend
s,t < 0 are also added to the model.

For each type t, the sum of bbeg
s,t over the stations is zero. Therefore if a model

chooses some BPs connecting an initial surplus to a final deficit (i.e. where the BP
increases the number of train units needed), then the appropriate number of BPs
from an initial deficit to a final surplus will also be selected. So at the end, the
updated rolling stock plan uses the same number of train units as the input.

The model (1)–(5) is solved by general purpose MIP software. The perfor-
mance of the heuristic is presented in Section 7.

6 A flow-based heuristic approach

In this section, we describe an iterative heuristic approach for the Rolling Stock
Balancing Problem. In each iteration, either a type switching step or a re-routing
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step is carried out. Both steps are intended to decrease the number of off-balances
in a greedy way. The overall algorithm stops if no step can bring any further
improvement.

In a type switching step, pairs of rolling stock units of different types are con-
sidered. The algorithm checks whether exchanging units in such a pair results in
a feasible rolling stock schedule and also whether the exchange would decrease
the number of off-balances. The two units whose exchange leads to the largest
improvement are in fact switched, yielding an updated rolling stock schedule.
Thereafter another iteration is launched.

Re-routing steps modify the internal structure of the schedule. Each step at-
tempts to solve a special case of the problem with an off-balance of a single train
unit. Having found a solution to this special case, the rolling stock schedule is
updated accordingly. The updated plan has one off-balance less. Then another
iteration is carried out.

The concept of type switching is rather straightforward. In what follows in
this section we describe the re-routing step in detail.

6.1 The re-routing step

Here we assume that station A has an initial surplus of one unit of type t, station
B has an initial deficit of one unit of the same type t, and there is no further off-
balance in the input plan. (The case when A and B have off-balances in the final
inventory is analogous.) The goal is to modify the input rolling stock schedule in
order to resolve these off-balances. In Section 4 we have seen that the feasibility
variant of this problem is NP-complete.

The re-routing step is intended to be significantly simpler than the general
RSBP as we do not expect to change the input plan too deeply just to re-route
a single unit. This motivates the basic restriction here: the input schedule is to
be modified in such a way that the circulation of every train unit type differing
from t must not be changed. So for example, if a trip has composition ‘tab’ in
the input schedule with train unit types a, b and t, then the output schedule may
assign composition ‘ab’, ‘atb’, ‘attb’, etc. to the trip. However, it may not assign
‘taa’ or ‘tba’ since those would change the circulation of types ‘a’ and ‘b’.
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The graph representation

We represent the RSBP as a network flow problem. To do so, we build up a graph
G = (V, E) which is going to be a variant of the usual time-space networks. Let
us start with an empty graph.

A time moment j is relevant at station C if a trip departs at j from C or if a
trip r arrives at j − %(r) at C where %(r) is the re-allocation time. In addition,
the begin and the end of the planning period are also relevant. Create a station
node for each pair (C, j) where C is a station and j is a relevant time moment at
C. For each pair j, j′ of consecutive relevant time moments at C, draw a station
arc from the node associated with (C, j) to the node associated with (C, j′). The
flow values on the station arcs shall express the current inventories of type t at
the stations. Station nodes at the beginning of the planning period are the source
nodes, station nodes at the end are the sink nodes.

Consider a trip r and suppose that the input plan assigns composition

t . . . t︸ ︷︷ ︸
k
(r)
1

t1 t . . . t︸ ︷︷ ︸
k
(r)
2

. . . t`r−1 t . . . t︸ ︷︷ ︸
k
(t)
`r

(7)

to r where t1, . . . , t`r−1 denote train unit types differing from t. (As usual, we
assume that the right-hand side of this string corresponds to the front of the train.)
That is, train units of type t are assigned to trip r in `r possibly empty groups,
separated by `r−1 units of other types. The heuristic algorithm shall only modify
the integer values k

(r)
1 , . . . , k

(r)
`r

.
Create `r new nodes u

(r)
1 , . . . , u

(r)
`r

corresponding to the groups of type t at the
departure of r, and create `r new nodes v

(r)
1 , . . . , v

(r)
`r

corresponding to the arrival
of trip r. Moreover, draw the arcs u

(r)
i v

(r)
i for each i = 1, . . . , `r. We call these

arcs trip arcs.
Let r′ be the successor trip of trip r and suppose that in the input plan, units

are uncoupled form the arriving trip r. (Note that this can cover the case when
r has no successor trip at all.) We also assume that the uncoupling takes place
at the front side of the train. Then our graph representation does not contain the
possibility of coupling any unit to trip r′ and we have `r ≥ `r′ . Physically, the
train is split into two parts at a point that lies in the `r′ th group of the arriving
composition. Then the first (i.e. left-most in (7)) `r′ −1 groups go over unchanged
to become the first `r′ − 1 groups of trip r′. The last (i.e. right-most in (7)) `r − `r′
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groups (if any) are uncoupled. Units in the `r′ th group of trip r can go over to the
`r′ th group of trip r′ or they can be uncoupled. These possibilities are expressed by
the arcs shown in Figure 8(a) for the case `r = 3 and `r′ = 2. Notice that the re-
allocation time is respected. The construction can easily be adjusted if uncoupling
takes place at the rear side of the arriving trip.

trip r trip r
′

v
(r)
1

v
(r)
3

u
(r′)
1

u
(r′)
2

︸ ︷︷ ︸

̺(r)

(a) Uncoupling

trip r trip r
′

v
(r)
1

v
(r)
2

u
(r′)
1

u
(r′)
3

(b) Coupling

trip r trip r
′

v
(r)
1

v
(r)
2

u
(r′)
1

u
(r′)
2

︸ ︷︷ ︸

̺(r)

(c) No change

Figure 8: The graph representation of the cases when in the input plan uncoupling,
coupling or no composition change takes place between trips r and r′.

The case when units are added to the departing trip r′ in the input plan is
modeled similarly. Then the graph does not include the possibility of uncoupling
units after the arrival of trip r. An example (where a composition change may
take place at the front side) is shown in Figure 8(b).

Finally, if trips r and r′ have identical compositions in the input plan, then the
graph expresses the possibility of coupling and uncoupling units. Suppose that
uncoupling and coupling are possible at the front side (the other cases being anal-
ogous). Then the first (i.e. left-most in (7)) `r − 1 groups of trip r go unchanged
over to the first `r − 1 groups of trip r′. However, the last group of trip r can
be decreased or the last group of trip r′ can be increased by uncoupling or cou-
pling units of type t. Recall that coupling and uncoupling at the same time is not
allowed. An example is given in Figure 8(c).

We call an arc from a station node to a node u
(r)
i a coupling arc and we call

an arc from a node v
(r)
i to a station node an uncoupling arc as they are intended to

describe coupling and uncoupling of units. This completes the definition of graph
G. Figure 9 indicates the graph representation of a small railway network.
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(a) The time-space diagram (b) The graph

Figure 9: The graph representation of a small railway network and the flow of the
black unit type: bold arcs have flow value one, other arcs have zero flow value.

Network flows in this graph

The schedule of the units of type t in the input plan corresponds to a network flow
x in G = (V, E) as follows. Each trip arc gets the corresponding value k

(r)
i . The

number of coupled or uncoupled units of type t is assigned to the coupling and
uncoupling arcs. The flow value on a station arc is the inventory of type t at that
station during the time interval indicated by the arc. Then the source nodes have a
(possibly zero) net out-flow, the sink nodes have a (possibly zero) net in-flow, and
all other nodes satisfy the flow conservation law.

The flow value on each arc is non-negative and, depending on the problem
specification, they obey certain upper bounds denoted by g(a) for arc a. For ex-
ample, bounds on the station arcs may express the storage capacity of the stations.
In addition, the following two side constraints (8) – (9) must be satisfied.

First, the train length on each trip r obeys the lower and upper bounds:

µmin
r − Lr ≤

`r∑
i=1

x′
(
u

(r)
i v

(r)
i

)
≤ µmax

r − Lr for each trip r (8)

where µmin
r (and µmax

r ) is the minimal (and maximal) length of the train on trip r,
respectively, and Lr denotes the number of carriages in those units on trip r whose
type differs from t.

Second, coupling and uncoupling may not take place at the same time between
a trip r and its successor r′:

`r∑
i=1

∑
a∈δout(v

(r)
i ):

a uncoupling arc

x′(a) = 0 or
`r∑

i=1

∑
a∈δin(u

(r′)
i ):

a coupling arc

x′(a) = 0 (9)

where δin(v) (and δout(v)) denotes the set of arcs entering (and leaving) node v.
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Conversely, if a network flow in G satisfies side constraints (8) – (9), then it
corresponds to a feasible rolling stock schedule.

Recall that station A has an initial surplus of one unit and station B has an
initial deficit of one unit. That is, the desired final inventories are equal to the net
in-flow of the sink nodes; the desired initial inventories are equal to the net out-
flow of the source nodes except for A and B. In order to resolve this off-balance,
we have to find a network flow x′ such that, identifying stations A and B with their
source node, x′(δout(A)) = x(δout(A)) + 1 and x′(δout(B)) = x(δout(B)) − 1. At
each other node, the net in- and out-flow of x and x′ must be equal. Furthermore,
x′ must satisfy the side constraints (8) – (9).

It is well-known in network flow theory that, if such a flow x′ (without requir-
ing (8) – (9)) exists, then it can be obtained by modifying x along an augmenting
path P which is a directed A − B path in the auxiliary graph Gx. The auxiliary
graph Gx on node set V is constructed as follows. Let Gx have the forward arc
uv if uv ∈ E with x(uv) < g(uv). Let Gx have the backward arc vu if uv ∈ E

with x(uv) > 0. Then the modification of x is defined as

x′(uv) =


x(uv) + 1 if the forward arc uv is used by path P ,
x(uv)− 1 if the backward arc vu is used by path P ,

x(uv) otherwise.
(10)

An arbitrary augmenting path P may lead to the violation of the side con-
straints (8) – (9). Actually, the feasibility version of RSBP is NP-complete, there-
fore an augmenting path satisfying the side constraints cannot be found in polyno-
mial time (unless P=NP). In our heuristic approach, we simply relax the side con-
straints (8) – (9): we look for an augmenting path and verify afterwards whether
the updated network flow x′ satisfies the side constraints (8) – (9).

If there is no augmenting path at all then the instance of RSBP is certainly
infeasible. If there is an augmenting path and x′ fulfills constraints (8) – (9) then
the off-balance of stations A and B has been resolved. However, if there exists
an augmenting path but the side constraints are violated, the algorithm reports
that the off-balance could not be resolved. In the latter case, the answer might
be wrong: other augmenting paths might result in satisfied side constraints. Note
that in our extensive computational tests, we did not find any augmenting path that
lead to violated side constraints (8) – (9).
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Variants of the re-routing step

As described above, the re-routing step attempts to find any augmenting path.
This reflects that the main objective is to resolve as many off-balances as possi-
ble. However, the additional objective criteria (carriage-kilometers, seat shortage
kilometers and the number of composition changes) can be taken into account by
assigning cost values to the arcs of G. Then, according to classical network flow
theory, arc cost in Gx are defined by cx(uv) = c(uv) if uv is a forward arc and
by cx(vu) = −c(uv) if vu is a backward arc. Now we have to look for a min-
imum cost augmenting path in Gx. However, in our implementation we do not
allow negative arc cost in the auxiliary graph. On one hand, investigation on the
trade-off between the objective criteria falls out of our scope. On the other hand,
non-negative arc costs admit a very efficient path search method in Gx by using
Dijkstra’s algorithm with Fibonacci heaps (see Fredman and Tarjan (1987)).

The re-routing step can easily be extended to the case when, instead of a single
station A and a single station B, a list of stations with initial off-balances is given.
Denoting the set of stations with an initial surplus by A and the set of stations
with an initial deficit by B, we can compute a cheapest A − B-path in Gx. If it
satisfies constraints (8) – (9), then the updated rolling stock schedule resolves one
off-balance in the cheapest possible way.

7 Results

In this section we report our computational results. All test instances are based
on the generic Saturday and Sunday timetables of the so-called 3000 line of NS
connecting Den Helder (Hdr) to Nijmegen (Nm). The stations are indicated in
Figure 10. The line is operated twice an hour in both directions. The timetable
contains about 500 trips on each day.

Composition changes are possible at the terminals as well as the intermedi-
ate stations Alkmaar (Amr) and Arnhem (Ah). Furthermore, units may start and
finish their daily duties at Amsterdam (Asd) and Utrecht (Ut), although under-
way composition changes are not permitted at these two stations. The 3000 line
has a closed rolling stock circulation and is currently serviced by 11 units of type
VIRM4 and 24 units of type VIRM6; these are double-deck units with 4 or 6 car-
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riages, respectively. The maximally allowed train length is 12 carriages, thus the
VIRM types admit no more than 7 possible compositions for a trip, namely 4, 6,
44, 46, 64, 66, and 444.

Hdr Amr Asd Ut Ah Nm

Figure 10: The 3000 line connecting Den Helder (Hdr) to Nijmegen (Nm) via
Alkmaar (Amr), Amsterdam (Asd), Utrecht (Ut) and Arnhem (Ah).

In the first computational tests, referred to as V46, we considered the timetable
on Sunday. We assumed that a certain part of the trajectory (either Amr-Asd or
Asd-Ut or Ah-Nm) is closed either until 14:00 or for the entire Sunday. The
reduced timetable has about 400 trips. In each of these six cases, we defined the
rolling stock turn-arounds at the boundaries of the closed infrastructure by joining
an arrival to the first possible departure. The solutions may have off-balances on
Sunday morning and evening.

To illustrate the behavior of the solution methods under different preferences
of the decision makers, we considered three different settings for the relative
importance of the objective criteria (off-balances, carriage-kilometers, shortage-
kilometers, number of composition changes). We refer to these as Obj-A, Obj-B
and Obj-C. Table 1 contains the values of the coefficients in the objective func-
tions. Besides heavily penalizing the remaining off-balances, the three cost struc-
tures prefer minimizing one of the other three optimization criteria: Obj-A focuses
on carriage-kilometers, Obj-B on composition changes, and Obj-C on seat short-
ages.

Table 1: Objective coefficients in the three cost structures.
Criterion Obj-A Obj-B Obj-C
Off-balance 1,000.0 1,000.0 1,000.0
Carriage-kilometers 0.050 0.005 0.005
Composition changes 0.010 20.000 0.010
Shortage-kilometers 0.015 0.010 0.015

We computed the input rolling stock schedules by the model of Fioole et al.
(2006) with the objective functions Obj-A, Obj-B and Obj-C, setting the penalty
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of off-balances to zero; we used the commercial MIP software CPLEX to solve
these integer programs. Then we applied the heuristic algorithms described in
Sections 5 and 6 to resolve the off-balances. We also solved the model of Fioole
et al. (2006) with the high penalties on the off-balances. That is, we computed
three solutions for each of the 18 V46-instances.

So far, the planning period was one day. In the case when the infrastructure
is blocked for an entire day, it is common in practice to modify the rolling stock
schedules on the previous day. This leads to instances with a planning period
of two days: Saturday and Sunday. To make the instance similar to practical in-
stances, we allow off-balances at Sunday morning and evening but not at Saturday
morning. That is, the off-balances are to be resolved by dead-heading at Saturday
night and Sunday night. As input plan, we used the unchanged operational rolling
stock schedules for Saturday; for Sunday, we took the same input plan as in the
one-day instances. The 2-day test problems concern about 900 trips.

The VIRM4 and VIRM6 units have a limited number of possibilities to be
attached to one another. Therefore in further artificial experiments, referred to as
V23, we changed the rolling stock types used. We split each VIRM4 and VIRM6
unit into two identical parts (i.e. VIRM2 and VIRM3). This results in as much as
48 possible compositions for each trip, increasing the complexity of the problem
significantly. For these artificial rolling stock types, we considered the same one-
and two-day instances and the same solution methods as for the original rolling
stock types.

Throughout this section, Heur-1 denotes the two-phase approach described
in Section 5 as well as its results, while Heur-2 denotes the iterative approach
described in Section 6 as well as its results.

For Phase 1 of Heur-1, we identified about 20 classes of balancing possibili-
ties and collected about 10,000–30,000 possibilities. Thus the integer program in
Phase 2 of Heur-1 has about 10,000–30,000 variables and 500–1,000 constraints.
The graphs for Heur-2 have up to 5,800 nodes and up to 6,500 arcs.

The computations have been carried out on a PC equipped with a Pentium
IV 3.0GHz processor and 1GB internal memory. We used CPLEX 9.0 with the
modeling software ILOG Opl Studio 3.7. The heuristic algorithms have been
implemented in the C language (Heur-1) and in the Perl language (Heur-2).
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7.1 The quality of the solutions

We present in Tables 3 and 4 the number of unresolved off-balances and the objec-
tive values for all our solutions. It turns out that Heur-2 significantly outperforms
Heur-1. This can be explained partially by the fact that in Heur-1 two selected
balancing possibilities may not touch the same trip, even if the technical and mar-
ket requirements would allow using both of them. Yet, in some cases the greedy
method in Heur-2 terminates with a higher number of off-balances than Heur-1.
However, Heur-1 appears to be able to balance the four optimization criteria better
than Heur-2. Indeed, the contribution of carriage-kilometers, shortage-kilometers
and shunting movements to the objective function (this is the ‘Rest’ column in
Table 3 and 4) is often much higher in Heur-2 than in Heur-1. This is particularly
true for the test problems with Obj-C.

The tables also show the numbers of unresolved off-balances and the objective
values in the optimal solutions. Actually, these optimal solutions have the smallest
possible numbers of off-balances.

We can observe that the quality of the solutions highly depends on the structure
of the input plan (see Table 2). In Obj-B, the number of composition changes has
the largest weight. Therefore the input plan (which was computed by CPLEX)
contains a very small number of couplings and uncouplings. Then, the heuristic
methods find ways to resolve many off-balances. The input plans for Obj-A and
Obj-C are obtained by penalizing the carriage-kilometers and shortage-kilometers
more heavily. The resulting larger number of composition changes is apparently
disadvantageous for both heuristic methods.

The input plans of the V23 instances have much more off-balances than those
of the V46 instances (almost twice as high on average). However, if one consid-
ers how much off-balances the heuristic solutions leave compared to the optimal
solutions, it turns out that these differences are very similar in the V46 and V23
instances. For Heur-1, the average difference in the number of off-balances is 5.11
and 5.93 for V46 and V23, respectively, while for Heur-2 these averages are 2.78
and 2.89. That is, the heuristic algorithms perform relatively better on the V23
instances than on the V46 instances. This is not surprising: the shorter units give
much more possibilities for adjustments without violating the constraints on the
minimal and maximal lengths of the trains.
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Table 2: The average difference between the off-balances in the heuristic solutions
(OB1 for Heur-1 and OB2 for Heur-2) and in the optimal solution (OBopt).

OB1 −OBopt OB2 −OBopt

V46 Obj-A 6.00 3.78
V46 Obj-B 4.00 1.00
V46 Obj-C 5.33 3.56
V46 total 5.11 2.78
V23 Obj-A 6.33 3.67
V23 Obj-B 3.00 0.89
V23 Obj-C 8.44 4.11
V23 total 5.93 2.89

7.2 Computation times

Recall that the main motivation for using heuristic algorithms is the need for a
quick (suboptimal) solution process. The algorithm Heur-1 has a running time
of 1–2 minutes for each of the test problem instances. Most of this time is spent
on identifying the balancing possibilities, the CPLEX model in the second phase
is solved within seconds. The algorithm Heur-2 also has a running time of 1–2
minutes.

In Tables 3 and 4 we give the computation times of the exact optimization
method of CPLEX. Although this involves a relatively small instance of NS, it
already shows how unpredictably the solution times grow when increasing the
problem size. The V46 instances are easily solved for one-day planning horizons
(these instances are denoted by 46-C*-H-* and 46-C*-F-* where * represents an
arbitrary character) within 10–20 seconds. The two-day instances (46-C*-W-*)
require more than 5 times more CPU time on average. The V23 instances have a
much more complex combinatorial structure due to the higher number of possible
compositions. The solution time ranges from 2 minutes to 45 minutes, and a
particular two-day instance requires nearly 2 hours.
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Table 3: Results for the V46 instances. The instance names are composed of the
types used (V46), the closed infrastructure (C1 for Ah-Nm, C2 for Asd-Ut and
C3 for Amr-Asd), the duration of the blockage (H for half of Sunday, F for the
full Sunday, W for the whole weekend) and the objective function (A for Obj-
A, etc.). ‘Optimal’ stands for the exact solutions by CPLEX. ‘IOB’ denotes the
off-balance in the input plan, ‘OB’ the remaining off-balance, ‘Rest’ the contri-
bution of carriage-kilometers, seat shortages and shunting movements, ‘Obj’ the
objective value, and ‘ST’ the solution time (in seconds).
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Table 4: Results for the V23 instances. Here we use the same notations as in
Table 3.
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8 Conclusions

In this paper we formulated the Rolling Stock Balancing Problem (RSBP). This
problem arises at various stages of the planning process of a passenger railway
operator: from the short-term planning phase (i.e. planning some days or weeks
ahead) till the real-time operations. Due to changes in the timetable (e.g. planned
maintenance or unplanned disruptions) the previously created rolling stock sched-
ules for a certain time period have to be adjusted.

Two heuristics have been developed to solve the RSBP. The performance of
these algorithms are compared with the performance of the exact solution method
used at NS, the main Dutch passenger railway operator. The comparison of the
results is done on some (variants of) real-life instances of NS. These instances
varied in size and complexity.

From the results presented in Section 7 we can conclude that both heuristics
are very fast, even if the problem size is increased (two-day variants). The re-
sults also show that both heuristics can be effectively used not only for solving
larger size problems, but they can be also used as a basis for solving real-time
rescheduling problems.
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