528 research outputs found

    Baby-Step Giant-Step Algorithms for the Symmetric Group

    Full text link
    We study discrete logarithms in the setting of group actions. Suppose that GG is a group that acts on a set SS. When r,s∈Sr,s \in S, a solution g∈Gg \in G to rg=sr^g = s can be thought of as a kind of logarithm. In this paper, we study the case where G=SnG = S_n, and develop analogs to the Shanks baby-step / giant-step procedure for ordinary discrete logarithms. Specifically, we compute two sets A,B⊆SnA, B \subseteq S_n such that every permutation of SnS_n can be written as a product abab of elements a∈Aa \in A and b∈Bb \in B. Our deterministic procedure is optimal up to constant factors, in the sense that AA and BB can be computed in optimal asymptotic complexity, and ∣A∣|A| and ∣B∣|B| are a small constant from n!\sqrt{n!} in size. We also analyze randomized "collision" algorithms for the same problem

    An exponential lower bound for Individualization-Refinement algorithms for Graph Isomorphism

    Full text link
    The individualization-refinement paradigm provides a strong toolbox for testing isomorphism of two graphs and indeed, the currently fastest implementations of isomorphism solvers all follow this approach. While these solvers are fast in practice, from a theoretical point of view, no general lower bounds concerning the worst case complexity of these tools are known. In fact, it is an open question whether individualization-refinement algorithms can achieve upper bounds on the running time similar to the more theoretical techniques based on a group theoretic approach. In this work we give a negative answer to this question and construct a family of graphs on which algorithms based on the individualization-refinement paradigm require exponential time. Contrary to a previous construction of Miyazaki, that only applies to a specific implementation within the individualization-refinement framework, our construction is immune to changing the cell selector, or adding various heuristic invariants to the algorithm. Furthermore, our graphs also provide exponential lower bounds in the case when the kk-dimensional Weisfeiler-Leman algorithm is used to replace the standard color refinement operator and the arguments even work when the entire automorphism group of the inputs is initially provided to the algorithm.Comment: 21 page

    A monomial matrix formalism to describe quantum many-body states

    Full text link
    We propose a framework to describe and simulate a class of many-body quantum states. We do so by considering joint eigenspaces of sets of monomial unitary matrices, called here "M-spaces"; a unitary matrix is monomial if precisely one entry per row and column is nonzero. We show that M-spaces encompass various important state families, such as all Pauli stabilizer states and codes, the AKLT model, Kitaev's (abelian and non-abelian) anyon models, group coset states, W states and the locally maximally entanglable states. We furthermore show how basic properties of M-spaces can transparently be understood by manipulating their monomial stabilizer groups. In particular we derive a unified procedure to construct an eigenbasis of any M-space, yielding an explicit formula for each of the eigenstates. We also discuss the computational complexity of M-spaces and show that basic problems, such as estimating local expectation values, are NP-hard. Finally we prove that a large subclass of M-spaces---containing in particular most of the aforementioned examples---can be simulated efficiently classically with a unified method.Comment: 11 pages + appendice

    Testing Linear-Invariant Non-Linear Properties

    Get PDF
    We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for "triangle freeness": a function f:\cube^{n}\to\cube satisfies this property if f(x),f(y),f(x+y)f(x),f(y),f(x+y) do not all equal 1, for any pair x,y\in\cube^{n}. Here we extend this test to a more systematic study of testing for linear-invariant non-linear properties. We consider properties that are described by a single forbidden pattern (and its linear transformations), i.e., a property is given by kk points v_{1},...,v_{k}\in\cube^{k} and f:\cube^{n}\to\cube satisfies the property that if for all linear maps L:\cube^{k}\to\cube^{n} it is the case that f(L(v1)),...,f(L(vk))f(L(v_{1})),...,f(L(v_{k})) do not all equal 1. We show that this property is testable if the underlying matroid specified by v1,...,vkv_{1},...,v_{k} is a graphic matroid. This extends Green's result to an infinite class of new properties. Our techniques extend those of Green and in particular we establish a link between the notion of "1-complexity linear systems" of Green and Tao, and graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the proceedings of STACS 200

    Quantum Weakly Nondeterministic Communication Complexity

    Full text link
    We study the weakest model of quantum nondeterminism in which a classical proof has to be checked with probability one by a quantum protocol. We show the first separation between classical nondeterministic communication complexity and this model of quantum nondeterministic communication complexity for a total function. This separation is quadratic.Comment: 12 pages. v3: minor correction

    Quantum Interactive Proofs with Competing Provers

    Full text link
    This paper studies quantum refereed games, which are quantum interactive proof systems with two competing provers: one that tries to convince the verifier to accept and the other that tries to convince the verifier to reject. We prove that every language having an ordinary quantum interactive proof system also has a quantum refereed game in which the verifier exchanges just one round of messages with each prover. A key part of our proof is the fact that there exists a single quantum measurement that reliably distinguishes between mixed states chosen arbitrarily from disjoint convex sets having large minimal trace distance from one another. We also show how to reduce the probability of error for some classes of quantum refereed games.Comment: 13 pages, to appear in STACS 200

    Making Classical Ground State Spin Computing Fault-Tolerant

    Full text link
    We examine a model of classical deterministic computing in which the ground state of the classical system is a spatial history of the computation. This model is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form, systems constructed in this model cannot compute in an error free manner when working at non-zero temperature. However, by exploiting a mapping between the partition function for this model and probabilistic classical circuits we are able to show that it is possible to make this model effectively error free. We achieve this by using techniques in fault-tolerant classical computing and the result is that the system can compute effectively error free if the temperature is below a critical temperature. We further link this model to computational complexity and show that a certain problem concerning finite temperature classical spin systems is complete for the complexity class Merlin-Arthur. This provides an interesting connection between the physical behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur

    On analog quantum algorithms for the mixing of Markov chains

    Full text link
    The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements. There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd\"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain.Comment: The section concerning time-averaged mixing (Sec VIII) has been updated: Now contains numerical plots and an intuitive discussion on the random matrix theory results used to derive the results of arXiv:2001.0630

    Improved Approximation Algorithms for Projection Games

    Get PDF
    The projection games (aka Label-Cover) problem is of great importance to the field of approximation algorithms, since most of the NP-hardness of approximation results we know today are reductions from Label-Cover. In this paper we design several approximation algorithms for projection games: 1. A polynomial-time approximation algorithm that improves on the previous best approximation by Charikar, Hajiaghayi and Karloff [7]. 2. A sub-exponential time algorithm with much tighter approximation for the case of smooth projection games. 3. A PTAS for planar graphs.National Science Foundation (U.S.) (Grant 1218547

    Entanglement entropies in free fermion gases for arbitrary dimension

    Full text link
    We study the entanglement entropy of connected bipartitions in free fermion gases of N particles in arbitrary dimension d. We show that the von Neumann and Renyi entanglement entropies grow asymptotically as N^(1-1/d) ln N, with a prefactor that is analytically computed using the Widom conjecture both for periodic and open boundary conditions. The logarithmic correction to the power-law behavior is related to the area-law violation in lattice free fermions. These asymptotic large-N behaviors are checked against exact numerical calculations for N-particle systems.Comment: 6 pages, 9 fig
    • 

    corecore