
Improved Approximation Algorithms for
Projection Games

Pasin Manurangsi and Dana Moshkovitz

Massachusetts Institute of Technology, Cambridge MA 02139, USA,
{pasin,dmoshkov}@mit.edu ?

Abstract. The projection games (aka Label-Cover) problem is of great
importance to the field of approximation algorithms, since most of the
NP-hardness of approximation results we know today are reductions from
Label-Cover. In this paper we design several approximation algorithms
for projection games:

1. A polynomial-time approximation algorithm that improves on the
previous best approximation by Charikar, Hajiaghayi and Karloff [7].

2. A sub-exponential time algorithm with much tighter approximation
for the case of smooth projection games.

3. A PTAS for planar graphs.

Keywords: Label-Cover, projection games

1 Introduction

The projection games problem (also known as Label Cover) is defined as
follows.

Input: A bipartite graph G = (A,B,E), two finite sets of labels ΣA, ΣB ,
and, for each edge e = (a, b) ∈ E, a “projection” πe : ΣA → ΣB .

Goal: Find an assignment to the vertices ϕA : A → ΣA and ϕB : B →
ΣB that maximizes the number of edges e = (a, b) that are “satisfied”, i.e.,
πe(ϕA(a)) = ϕB(b).

An instance is said to be “satisfiable” or “feasible” or have “perfect complete-
ness” if there exists an assignment that satisfies all edges. An instance is said
to be “δ-nearly satisfiable” or “δ-nearly feasible” if there exists an assignment
that satisfies (1 − δ) fraction of the edges. In this work, we focus on satisfiable
instances of projection games.

Label Cover has gained much significance for approximation algorithms
because of the following PCP Theorem, establishing that it is NP-hard, given a
satisfiable projection game instance, to satisfy even an ε fraction of the edges:

? This material is based upon work supported by the National Science Foundation
under Grant Number 1218547.

ar
X

iv
:1

40
8.

40
48

v1
 [

cs
.D

S]
 1

8
A

ug
 2

01
4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78055737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Theorem 1 (Strong PCP Theorem). For every n, ε = ε(n), there is k =
k(ε), such that deciding Sat on inputs of size n can be reduced to finding, given
a satisfiable projection game on alphabets of size k, an assignment that satisfies
more than an ε fraction of the edges.

This theorem is the starting point of the extremely successful long-code based
framework for achieving hardness of approximation results [6,11], as well as of
other optimal hardness of approximation results, e.g., for Set-Cover [9,16,8].

We know several proofs of the strong PCP theorem that yield different pa-
rameters in Theorem 1. The parallel repetition theorem [19], applied on the basic
PCP Theorem [5,4,3,2], yields k(ε) = (1/ε)O(1). Alas, it reduces exact Sat on
input size n to Label Cover on input size nO(log 1/ε). Hence, a lower bound
of 2Ω(n) for the time required for solving Sat on inputs of size n only implies

a lower bound of 2n
Ω(1/ log 1/ε)

for Label Cover via this theorem. This bound
deteriorates as ε approaches zero; for instance, if ε = (1/n)O(1), then the bound
is Ω(1), which gives us no information at all.

A different proof is based on PCP composition [17,8]. It has smaller blow up
but larger alphabet size. Specifically, it shows a reduction from exact Sat with
input size n to Label Cover with input size n1+o(1)poly(1/ε) and alphabet
size exp(1/ε).

One is tempted to conjecture that a PCP theorem with both a blow-up of
n1+o(1)poly(1/ε) and an alphabet size (1/ε)O(1) holds. See [16] for a discussion
of potential applications of this “Projection Games Conjecture”.

Finding algorithms for projection games is therefore both a natural pursuit
in combinatorial optimization, and also a way to advance our understanding of
the main paradigm for settling the approximability of optimization problems.
Specifically, our algorithms help make progress towards the following questions:

1. Is the ”Projection Games Conjecture” true? What is the tradeoff between
the alphabet size, the blow-up and the approximation factor?

2. What about even stronger versions of the strong PCP theorem? E.g., Khot
introduced “smooth” projection games [13] (see discussion below for the
definition). What kind of lower bounds can we expect to get via such a
theorem?

3. Does a strong PCP theorem hold for graphs of special forms, e.g., on planar
graphs?

2 Our Results

2.1 Better Approximation in Polynomial Time

In 2009, Charikar, Hajiaghayi and Karloff presented a polynomial-timeO((nk)1/3)-
approximation algorithm for Label Cover on graphs with n vertices and al-
phabets of size k [7]. This improved on Peleg’s O((nk)1/2)-approximation algo-
rithm [18]. Both Peleg’s and the CHK algorithms worked in the more general
setting of arbitrary constraints on the edges and possibly unsatisfiable instances.

2

We show a polynomial-time algorithm that achieves a better approximation for
satisfiable projection games:

Theorem 2. There is a polynomial-time algorithm that, given a satisfiable in-
stance of projection games on a graph of size n and alphabets of size k, finds an
assignment that satisfies O((nk)1/4) edges.

2.2 Algorithms for Smooth Projection Games

Khot introduced “smooth” projection games in order to obtain new hardness of
approximation results, e.g., for coloring problems [13]. In a smooth projection
game, for every vertex a ∈ A, the assignments projected to a’s neighborhood by
the different possible assignments σa ∈ ΣA to a, differ a lot from one another
(alternatively, form an error correcting code with high relative distance). More
formally:

Definition 1. A projection game instance is µ-smooth if for every a ∈ A and
any distinct assignments σa, σ

′
a ∈ ΣA, we have

Prb∈N(a)[π(a,b)(σa) = π(a,b)(σ
′
a)] ≤ µ

where N(a) is the set of neighbors of a.
Intuitively, smoothness makes the projection games problem easier, since

knowing only a small fraction of the assignment to a neighborhood of a vertex
a ∈ A determines the assignment to a.

Smoothness can be seen as an intermediate property between projection and
uniqueness, with uniqueness being 0-smoothness. Khot’s Unique Games Con-
jecture [14] is that the Strong PCP Theorem holds for unique games on nearly
satisfiable instances for any constant ε > 0.

The Strong PCP Theorem (Theorem 1) is known to hold for µ-smooth projec-
tion games with µ > 0. However, the known reductions transform Sat instances
of size n to instances of smooth Label Cover of size at least nO((1/µ) log(1/ε)) [13,12].
Hence, a lower bound of 2Ω(n) for Sat only translates into a lower bound of

2n
Ω(µ/ log(1/ε))

for µ-smooth projection games.
Interestingly, the efficient reduction of Moshkovitz and Raz [17] inherently

generates instances that are not smooth. Moreover, for unique games it is known
that if they admit a reduction from Sat of size n, then the reduction must incur

a blow-up of at least n1/δ
Ω(1)

for δ-almost satisfiable instances. This follows from
the sub-exponential time algorithm of Arora, Barak and Steurer [1].

Given this state of affairs, one wonders whether a large blow-up is necessary
for smooth projection games. We make progress toward settling this question by
showing:

Theorem 3. For any constant c ≥ 1, the following holds: there is a random-
ized algorithm that given a µ-smooth satisfiable projection game in which all

vertices in A have degrees at least c log |A|
µ , finds an optimal assignment in time

exp(O(µ|B| log |ΣB |))poly(|A|, |ΣA|) with probability 2/3.

3

There is also a deterministic O(1)-approximation algorithm for µ-smooth
satisfiable projection games of any degree. The deterministic algorithm runs in
time exp(O(µ|B| log |ΣB |))poly(|A|, |ΣA|) as well.

The algorithms work by finding a subset of fraction µ in B that is connected to
all, or most, of the vertices in A and going over all possible assignments to it.

Theorem 3 essentially implies that a blow-up of n/µ is necessary for any
reduction from Sat to µ-smooth Label Cover, no matter what is the approx-
imation factor ε.

2.3 PTAS For Planar Graphs

As the strong PCP Theorem shows, Label Cover is NP-hard to approximate
even to within very small ε. Does Label Cover remain as hard when we con-
sider special kinds of graphs?

In recent years there has been much interest in optimization problems over
planar graphs. These are graphs that can be embedded in the plane without edges
crossing each other. Many optimization problems have very efficient algorithms
on planar graphs.

We show that while projection games remain NP-hard to solve exactly on
planar graphs, when it comes to approximation, they admit a PTAS:

Theorem 4. The following hold:

1. Given a satisfiable instance of projection games on a planar graph, it is NP-
hard to find a satisfying assignment.

2. There is a polynomial time approximation scheme for satisfiable instances of
projection games on planar graphs.

The NP-hardness of projection games on planar graphs is based on a reduc-
tion from 3-colorability problem on planar graphs. The PTAS works via Klein’s
approach [15] of approximating the graph by a graph with constant tree-width.

3 Conventions

We define the following notation to be used in the paper.

– Let nA = |A| denote the number of vertices in A and nB = |B| denote the
number of vertices in B. Let n denote the number of vertices in the whole
graph, i.e. n = nA + nB .

– Let dv denote the degree of a vertex v ∈ A ∪B.
– For a vertex u, we use N(u) to denote set of vertices that are neighbors of
u. Similarly, for a set of vertex U , we use N(U) to denote the set of vertices
that are neighbors of at least one vertex in U .

– For each vertex u, define N2(u) to be N(N(u)). This is the set of neighbors
of neighbors of u.

4

– Let σOPTv be the assignment to v in an assignment to vertices that satisfies
all the edges. In short, we will sometimes refer to this as “the optimal assign-
ment”. This is guaranteed to exist from our assumption that the instances
considered are satisfiable.

– For any edge e = (a, b), we define pe to be |π−1(σOPTb)|. In other words,
pe is the number of assignments to a that satisfy the edge e given that b
is assigned σOPTb , the optimal assignment. Define p to be the average of pe

over all e; that is p =
∑
e∈E pe
|E| .

– For each set of vertices S, define E(S) to be the set of edges of G with at
least one endpoint in S, i.e., E(S) = {(u, v) ∈ E | u ∈ S or v ∈ S}.

– For each a ∈ A, let h(a) denote |E(N2(a))|. Let hmax = maxa∈Ah(a).

For simplicity, we make the following assumptions:

– G is connected. This assumption can be made without loss of generality, as,
if G is not connected, we can always perform any algorithm presented below
on each of its connected components and get an equally good or a better
approximation ratio.

– For every e ∈ E and every σb ∈ ΣB , the number of preimages in π−1e (σb) is
the same. In particular, pe = p for all e ∈ E.

We only make use of the assumptions in the algorithms for proving Theo-
rem 2. We defer the treatment of graphs with general number of preimages to
the appendix.

4 Polynomial-time Approximation Algorithms for
Projection Games

In this section, we present an improved polynomial time approximation algo-
rithm for projection games and prove Theorem 2.

To prove the theorem, we proceed to describe four polynomial-time approx-
imation algorithms. In the end, by using the best of these four, we are able
to produce a polynomial-time O

(
(nA|ΣA|)1/4

)
-approximation algorithm as de-

sired. Next, we will list the algorithms along with its rough descriptions (see
also illustrations in Figure 1 below); detailed description and analysis of each
algorithm will follow later in this section:

1. Satisfy one neighbor – |E|/nB-approximation. Assign each vertex in A
an arbitrary assignment. Each vertex in B is then assigned to satisfy one of
its neighboring edges. This algorithm satisfies at least nB edges.

2. Greedy assignment – |ΣA|/p-approximation. Each vertex in B is as-
signed an assignment σb ∈ ΣB that has the largest number of preimages
across neighboring edges

∑
a∈N(b) |π

−1
(a,b)(σb)|. Each vertex in A is then as-

signed so that it satisfies as many edges as possible. This algorithm works
well when ΣB assignments have many preimages.

5

3. Know your neighbors’ neighbors – |E|p/hmax-approximation. For a
vertex a0 ∈ A, we go over all possible assignments to it. For each assignment,
we assign its neighbors N(a0) accordingly. Then, for each node in N2(a0), we
keep only the assignments that satisfy all the edges between it and vertices
in N(a0).
When a0 is assigned the optimal assignment, the number of choices for each
node inN2(a0) is reduced to at most p possibilities. In this way, we can satisfy
1/p fraction of the edges that touch N2(a0). This satisfies many edges when
there exists a0 ∈ A such that N2(a0) spans many edges.

4. Divide and Conquer – O(nAnBhmax/|E|2)-approximation. For every
a ∈ A we can fully satisfy N(a) ∪ N2(a) efficiently, and give up on satis-
fying other edges that touch N2(a). Repeating this process, we can satisfy
Ω(|E|2/(nAnBhmax)) fraction of the edges. This is large when N2(a) does
not span many edges for all a ∈ A.

The smallest of the four approximation factors is at most as large as their geo-
metric mean, i.e.,

O

(
4

√
|E|
nB
· |ΣA|

p
· |E|p
hmax

· nAnBhmax
|E|2

)
= O((nA|ΣA|)1/4).

All the details of each algorithm are described below.

Satisfy One Neighbor Algorithm. We will present a simple algorithm that

gives |E|nB approximation ratio.

Lemma 1. For satisfiable instances of projection games, an assignment that
satisfies at least nB edges can be found in polynomial time, which gives the

approximation ratio of |E|nB .

Proof. For each node a ∈ A, pick one σa ∈ ΣA and assign it to a. Then, for each
b ∈ B, pick one neighbor a of b and assign ϕ(b) = πe(σa) for b. This guarantees
that at least nB edges are satisfied.

Greedy Assignment Algorithm. The idea for this algorithm is that if there
are many assignments in ΣA that satisfy each edge, then one satisfies many edges
by guessing assignments at random. The algorithm below is the deterministic
version of this algorithm.

Lemma 2. There exists a polynomial-time |ΣA|
p -approximation algorithm for

satisfiable instances of projection games.

Proof. The algorithm works as follows:

1. For each b, assign it σ∗b that maximizes
∑
a∈N(b) |π

−1
(a,b)(σb)|.

2. For each a, assign it σ∗a that maximizes the number of edges satisfied, |{b ∈
N(a) | π(a,b)(σa) = σ∗b}|.

6

(1) (2)

(3) (4)

Fig. 1. An Overview of The Algorithms in One Figure. Four algorithms are
used to prove Theorem 2: (1) In satisfy one neighbor algorithm, each vertex in B is
assigned to satisfy one of its neighboring edges. (2) In greedy assignment algorithm,
each vertex in B is assigned with an assignment with largest number of preimages. (3)
In know your neighbors’ neighbors algorithm, for a vertex a0, choices for each node in

N2(a0) are reduced to at most O(p) possibilities so O
(

1
p

)
fraction of edges that touch

N2(a0) are satisfied. (4) In divide and conquer algorithm, the vertices are seperated to
subsets, each of which is a subset of N(a)∪N2(a), and each subset is solved separately.

Let e∗ be the number of edges that get satisfied by this algorithm. We have

e∗ =
∑
a∈A
|{b ∈ N(a) | π(a,b)(σ∗a) = σ∗b}|.

By the second step, for each a ∈ A, the number of edges satisfied is at least
an average of the number of edges satisfy over all assignments in ΣA. This can

7

be written as follows.

e∗ ≥
∑
a∈A

∑
σa∈ΣA |{b ∈ N(a) | π(a,b)(σa) = σ∗b}|

|ΣA|

=
∑
a∈A

∑
b∈N(a) |π

−1
(a,b)(σ

∗
b)|

|ΣA|

=
1

|ΣA|
∑
a∈A

∑
b∈N(a)

|π−1(a,b)(σ
∗
b)|

=
1

|ΣA|
∑
b∈B

∑
a∈N(b)

|π−1(a,b)(σ
∗
b)|.

Moreover, from the first step, we can conclude that, for each b,
∑
a∈N(b) |π

−1
(a,b)(σ

∗
b)| ≥∑

a∈N(b) |π
−1
(a,b)(σ

OPT
b)|. As a result, we can conclude that

e∗ ≥ 1

|ΣA|
∑
b∈B

∑
a∈N(b)

|π−1(a,b)(σ
OPT
b)|

=
1

|ΣA|
∑
e∈E

pe

=
|E|p
|ΣA|

Hence, this algorithm satisfies at least p
|ΣA| fraction of the edges. Thus, this

is a polynomial-time |ΣA|p -approximation algorithm for satisfiable instances of
projection games, which concludes our proof.

Know Your Neighbors’ Neighbors Algorithm

The next algorithm shows that if the neighbors of neighbors of a vertex a0 ∈ A
expand, then one can satisfy many of the (many!) edges that touch the neighbors
of a0’s neighbors.

Lemma 3. For each a0 ∈ A, there exists a polynomial-time O
(
|E|p
h(a0)

)
-approximation

algorithm for satisfiable instances of projection games.

Proof. To prove Lemma 3, we want to find an algorithm that satisfies at least

Ω
(
h(a0)
p

)
edges for each a0 ∈ A.

The algorithm works as follows:

1. Iterate over all assignments σa0 ∈ ΣA to a0:

(a) Assign σb = π(a0,b)(σa0) to b for all b ∈ N(a0).

8

(b) For each a ∈ A, find the set of plausible assignments to a, i.e., Sa =
{σA ∈ ΣA | ∀b ∈ N(a)∩N(a0), π(a,b)(σA) = σb}. If for any a, the set Sa
is empty, then we proceed to the next assignment without executing the
following steps.

(c) For all b ∈ B, pick an assignment σ∗b for b that maximizes the average
number of satisfied edges over all assignments in Sa to vertices a in
N(b) ∩N2(a0), i.e., maximizes

∑
a∈N(b)∩N2(a0)

|π−1(a,b)(σb) ∩ Sa|.
(d) For each vertex a ∈ A, pick an assignment σ∗a ∈ Sa that maximizes the

number of satisfied edges, |{b ∈ N(a) | π(a,b)(σa) = σ∗b}|.
2. Pick an assignment {σ∗a}a∈A, {σ∗b}b∈B from the previous step that satisfies

the most edges.

We will prove that this algorithm indeed satisfies at least h(a)
p edges.

Let e∗ be the number of edges satisfied by the algorithm. We have

e∗ =
∑
a∈A
|{b ∈ N(a) | π(a,b)(σ∗a) = σ∗b}|.

Since in step 1, we try every possible σa0 ∈ ΣA, we must have tried σa0 =
σOPTa0 . This means that the assignment to a0 is the optimal assignment. As a
result, the assignments to every node in N(a0) is the optimal assignment; that
is σb = σOPTb for all b ∈ N(a0). Note that when the optimal assignment is
assigned to a0, we have σOPTa ∈ Sa for all a ∈ A. This means that the algorithm
proceeds until the end. Thus, the solution this algorithm gives satisfies at least
as many edges as when σv = σOPTv for all v ∈ {a0} ∪N(a0). From now on, we
will consider only this case.

Since for each a ∈ A, the assignment σ∗a is chosen to maximize the number of
edges satisfied, we can conclude that the number of edges satisfied by selecting
σ∗a is at least the average of the number of edges satisfied over all σa ∈ Sa.

As a result, we can conclude that

e∗ ≥
∑
a∈A

∑
σa∈Sa |{b ∈ N(a) | π(a,b)(σa) = σ∗b}|

|Sa|

=
∑
a∈A

∑
σa∈Sa

∑
b∈N(a) 1π(a,b)(σa)=σ

∗
b

|Sa|

=
∑
a∈A

∑
b∈N(a)

∑
σa∈Sa 1π(a,b)(σa)=σ

∗
b

|Sa|

=
∑
a∈A

∑
b∈N(a) |π

−1
(a,b)(σ

∗
b) ∩ Sa|

|Sa|

=
∑
b∈B

∑
a∈N(b)

|π−1(a,b)(σ
∗
b) ∩ Sa|
|Sa|

≥
∑
b∈B

∑
a∈N(b)∩N2(a0)

|π−1(a,b)(σ
∗
b) ∩ Sa|
|Sa|

9

Now, for each a ∈ N2(a0), consider Sa. From the definition of Sa, we have

Sa = {σA ∈ ΣA | ∀b ∈ N(a) ∩N(a0), π(a,b)(σA) = σb} =
⋂

b∈N(a)∩N(a0)

π−1(a,b)(σb).

As a result, we can conclude that

|Sa| ≤ min
b∈N(a)∩N(a0)

{|π−1(a,b)(σb)|}

= min
b∈N(a)∩N(a0)

{|π−1(a,b)(σ
OPT
b)|}

= min
b∈N(a)∩N(a0)

{p(a,b)}.

Note that since a ∈ N2(a0), we have N(a) ∩N(a0) 6= ∅. Since we assume for
simplicity that pe = p for all e ∈ E, we can conclude that |Sa| ≤ p.

This implies that

e∗ ≥ 1

p

∑
b∈B

∑
a∈N(b)∩N2(a0)

|π−1(a,b)(σ
∗
b) ∩ Sa|.

Since we pick the assignment σ∗b that maximizes
∑
a∈N(b)∩N2(a0)

|π−1(a,b)(σ
∗
b)∩

Sa| for each b ∈ B, we can conclude that

e∗ ≥ 1

p

∑
b∈B

∑
a∈N(b)∩N2(a0)

|π−1(a,b)(σ
∗
b) ∩ Sa|

≥ 1

p

∑
b∈B

∑
a∈N(b)∩N2(a0)

|π−1(a,b)(σ
OPT
b) ∩ Sa|.

Since the optimal assignment satisfies every edge, we can conclude that
σOPTa ∈ π−1(a,b)(σ

OPT
b) and σOPTa ∈ Sa, for all b ∈ B and a ∈ N(b) ∩ N2(a0).

This implies that

e∗ ≥ 1

p

∑
b∈B

∑
a∈N(b)∩N2(a0)

|π−1(a,b)(σ
OPT
b) ∩ Sa|

≥ 1

p

∑
b∈B

∑
a∈N(b)∩N2(a0)

1.

The last term can be written as

1

p

∑
b∈B

∑
a∈N(b)∩N2(a0)

1 =
1

p

∑
a∈N2(a0)

∑
b∈N(a)

1

=
1

p
(h(a0))

=
h(a0)

p
.

10

As a result, we can conclude that this algorithm gives an assignment that

satisfies at least h(a0)
p edges out of all the |E| edges. Hence, this is a polynomial-

time O
(
|E|p
h(a0)

)
approximation algorithm as desired.

Divide and Conquer Algorithm. We will present an algorithm that separates
the graph into disjoint subgraphs for which we can find the optimal assignments
in polynomial time. We shall show below that, if h(a) is small for all a ∈ A, then
we are able to find such subgraphs that contain most of the graph’s edges.

Lemma 4. There exists a polynomial-time O
(
nAnBhmax
|E|2

)
-approximation algo-

rithm for satisfiable instances of projection games.

Proof. To prove Lemma 4, we will describe an algorithm that gives an assignment

that satisfies Ω
(

|E|3
nAnBhmax

)
edges.

We use P to represent the collection of subgraphs we find. The family P
consists of disjoint sets of vertices. Let VP be

⋃
P∈P P .

For any set S of vertices, define GS to be the graph induced on S with
respect to G. Moreover, define ES to be the set of edges of GS . We also define
EP =

⋃
P∈P EP .

The algorithm works as follows.

1. Set P ← ∅.
2. While there exists a vertex a ∈ A such that |E(N(a)∪N2(a))−VP | ≥ 1

4
|E|2
nAnB

:
(a) Set P ← P ∪ {(N2(a) ∪N(a))− VP}.

3. For each P ∈ P, find in time poly(|ΣA|, |P |) an assignment to the vertices
in P that satisfies all the edges spanned by P .

We will divide the proof into two parts. First, we will show that when we

cannot find a vertex a in step 2,
∣∣E(A∪B)−VP

∣∣ ≤ |E|2 . Second, we will show that

the resulting assignment from this algorithm satisfies Ω
(

|E|3
nAnBhmax

)
edges.

We will start by showing that if no vertex a in step 2 exists, then
∣∣E(A∪B)−VP

∣∣ ≤
|E|
2 .

Suppose that we cannot find a vertex a in step 2. In other words, |E(N(a)∪N2(a))−VP | <
1
4
|E|2
nAnB

for all a ∈ A.

Consider
∑
a∈A |E(N(a)∪N2(a))−VP |. Since |E(N(a)∪N2(a))−VP | < 1

4
|E|2
nAnB

for all
a ∈ A, we have the following inequality.

|E|2

4nB
≥
∑
a∈A
|E(N(a)∪N2(a))−VP |.

Let Np(v) = N(v) − VP and Np
2 (v) = N2(v) − VP . Similary, define Np(S)

for a subset S ⊆ A ∪B. It is easy to see that Np
2 (v) ⊇ Np(Np(v)). This implies

that, for all a ∈ A, we have |E(Np(a)∪Np2 (a))| ≥ |E(Np(a)∪Np(Np(a)))|. Moreover,

11

it is not hard to see that, for all a ∈ A − VP , we have |E(Np(a)∪Np(Np(a)))| =∑
b∈Np(a) |Np(b)|.
Thus, we can derive the following:∑

a∈A
|E(N(a)∪N2(a))−VP | =

∑
a∈A
|E(Np(a)∪Np2 (a))|

≥
∑

a∈A−VP

|E(Np(a)∪Np2 (a))|

≥
∑

a∈A−VP

∑
b∈Np(a)

|Np(b)|

=
∑

b∈B−VP

∑
a∈Np(b)

|Np(b)|

=
∑

b∈B−VP

|Np(b)|2.

From Jensen’s inequality, we have

∑
a∈A
|E(N(a)∪N2(a))−VP | ≥

1

|B − VP |

(∑
b∈B−VP

|Np(b)|

)2

=
1

|B − VP |
∣∣E(A∪B)−VP

∣∣2
≥ 1

nB

∣∣E(A∪B)−VP
∣∣2 .

Since |E|
2

4nB
≥
∑
a∈A |E(N(a)∪N2(a))−VP | and

∑
a∈A |E(N(a)∪N2(a))−VP | ≥ 1

nB

∣∣E(A∪B)−VP
∣∣2,

we can conclude that

|E|
2
≥
∣∣E(A∪B)−VP

∣∣
which concludes the first part of the proof.

Next, we will show that the assignment the algorithm finds satisfies at least

Ω
(

|E|3
nAnBhmax

)
edges. Since we showed that |E|2 ≥

∣∣E(A∪B)−VP
∣∣ when the algo-

rithm terminates, it is enough to prove that |EP | ≥ |E|2
4nAnBhmax

(
|E| −

∣∣E(A∪B)−VP
∣∣).

Note that the algorithm guarantees to satisfy all the edges in EP .
We will prove this by using induction to show that at any point in the algo-

rithm, |EP | ≥ |E|2
4nAnBhmax

(
|E| −

∣∣E(A∪B)−VP
∣∣).

Base Case. At the beginning, we have |EP | = 0 = |E|2
4nAnBhmax

(
|E| −

∣∣E(A∪B)−VP
∣∣),

which satisfies the inequality.
Inductive Step. The only step in the algorithm where any term in the inequal-

ity changes is step 2a. Let Pold and Pnew be the set P before and after step 2a

12

is executed, respectively. Let a be the vertex selected from step 2. Suppose that
Pold satisfies the inequality.

From the condition in step 2, we have |E(N(a)∪N2(a))−VPold | ≥
1
4
|E|2
nAnB

. Since

|EPnew | = |EPold |+ |E(N(a)∪N2(a))−VPold |, we have

|EPnew | ≥ |EPold |+
1

4

|E|2

nAnB
.

Now, consider
(
|E| − |E(A∪B)−VPnew |

)
−
(
|E| − |E(A∪B)−VPold |

)
. We have

(
|E| − |E(A∪B)−VPnew |

)
−
(
|E| − |E(A∪B)−VPold |

)
= |E(A∪B)−VPold | − |E(A∪B)−VPnew |

Since VPnew = VPold ∪ (N2(a) ∪N(a)), we can conclude that

((A ∪B)− VPold) ⊆ ((A ∪B)− VPnew) ∪ (N2(a) ∪N(a)) .

Thus, we can also derive

E(A∪B)−VPold ⊆ E((A∪B)−VPnew)∪(N2(a)∪N(a))

= E(A∪B)−VPnew ∪ {(a
′, b′) ∈ E | a′ ∈ N2(a) or b′ ∈ N(a)}.

From the definition of N and N2, for any (a′, b′) ∈ E, if b′ ∈ N(a) then
a′ ∈ N2(a). Thus, we have {(a′, b′) ∈ E | a′ ∈ N2(a) or b′ ∈ N(a)} = {(a′, b′) ∈
E | a′ ∈ N2(a)} = E(N2(a)). The cardinality of the last term was defined to be
h(a). Hence, we can conclude that

|E(A∪B)−VPold | ≤ |E(A∪B)−VPnew ∪ {(a
′, b′) ∈ E | a′ ∈ N2(a) or b′ ∈ N(a)}|

≤ |E(A∪B)−VPnew |+ |{(a
′, b′) ∈ E | a′ ∈ N2(a) or b′ ∈ N(a)}|

= |E(A∪B)−VPnew |+ |{(a
′, b′) ∈ E | a′ ∈ N2(a)}|

= |E(A∪B)−VPnew |+ |E(N2(a))|
= |E(A∪B)−VPnew |+ h(a)

≤ |E(A∪B)−VPnew |+ hmax.

This implies that
(
|E| −

∣∣E(A∪B)−VP
∣∣) increases by at most hmax.

Hence, since
(
|E| −

∣∣E(A∪B)−VP
∣∣) increases by at most hmax and |EP | in-

creases by at least 1
4
|E|2
nAnB

and from the inductive hypothesis, we can conclude
that

|EPnew | ≥
|E|2

4nAnBhmax

(
|E| −

∣∣E(A∪B)−VPnew

∣∣) .
Thus, the inductive step is true and the inequality holds at any point during

the execution of the algorithm.

13

When the algorithm terminates, since |EP | ≥ |E|2
4nAnBhmax

(
|E| −

∣∣E(A∪B)−VP
∣∣)

and |E|2 ≥
∣∣E(A∪B)−VP

∣∣, we can conclude that |EP | ≥ |E|3
8nAnBhmax

. Since the algo-
rithm guarantees to satisfy every edge in EP , we can conclude that the algorithm
gives O(nAnBhmax|E|2) approximation ratio, which concludes our proof of Lemma 4.

Proof of Theorem 2

Proof. Using Lemma 3 with a0 that maximizes the value of h(a0), i.e., h(a0) =

hmax, we can conclude that there exists a polynomial-timeO
(
|E|p
hmax

)
-approximation

algorithm for satisfiable instances of projection games.

Moreover, from Lemmas 1, 2 and 4, there exists a polynomial-time |E|
nB

-

approximation algorithm, a polynomial-time |ΣA|p -approximation algorithm and

a polynomial time O
(
nAnBhmax
|E|2

)
-approximation algorithm for satisfiable in-

stances of projection games.
By picking the best out of these four algorithms, we can get an approximation

ratio of O
(

min
(
|E|p
hmax

, |ΣA|p , |E|nB ,
nAnBhmax
|E|2

))
.

Since the minimum is at most the value of the geometric mean, we deduce
that the approximation ratio is

O

(
4

√
|E|p
hmax

· |ΣA|
p
· |E|
nB
· nAnBhmax

|E|2

)
= O

(
4
√
nA|ΣA|

)
.

This concludes the proof of Theorem 2.

5 Sub-Exponential Time Algorithms for Smooth
Projection Games

In this section, we prove Theorem 3 via Lemma 5 and Lemma 6 below.

5.1 Exact Algorithm for Graphs With Sufficiently Large Degrees

The idea of this algorithm is to randomly select Θ(µnB) vertices from B and
try all possible assignments for them. When the assignment for the selected set
is correct, we can determine the optimal assignment for every a ∈ A such that
more than µda of its neighbors are in the selected set.

The next lemma shows that, provided that the degrees of the vertices in A
are not too small, the algorithm gives an assignment that satisfies all the edges
with high probability.

Lemma 5. For every constant c ≥ 1, the following statement holds: given a
satisfiable instance of projection games that satisfies the µ-smoothness property
and that da ≥ c lognA

µ for all a ∈ A, one can find the optimal assignment for the

game in time exp(O(µnB log |ΣB |)) · poly(nA, ΣA) with probability 2/3.

14

Proof. Let c1 be a constant greater than one.

The algorithm is as follows.

1. For each b ∈ B, randomly pick it with probability c1µ. Call the set of all
picked vertices B∗.

2. Try every possible assignments for the vertices in B∗. For each assignment:

(a) For each node a ∈ A, try every assignment σa ∈ ΣA for it. If there is
exactly one assignment that satisfies all the edges that touch a, pick that
assignment.

3. If encountered an assignment satisfying all edges, return that assignment.

Next, we will show that, with probability 2/3, the algorithm returns the
optimal assignment with runtime exp(O(µnB log |ΣB |)) · poly(nA, |ΣA|).

For each b ∈ B, let Xb be an indicator variable for whether the vertex b is
picked, i.e. b ∈ B∗. From step 1, we have

E[Xb] = c1µ.

Let X be a random variable representing the number of vertices that are
selected in step 1, i.e. X = |B∗|. We have

E[X] =
∑
b∈B

E[Xb] = nBc1µ.

For each a ∈ A, let Ya be a random variable representing the number of their
neighbors that are picked, i.e. Ya = |B∗ ∩N(a)|. We have

E[Ya] =
∑

b∈N(a)

E[Xb] = dac1µ.

Clearly, by iterating over all possible assignments for B∗, the algorithm run-
time is |ΣB |O(|B∗|) = exp(O(|B∗| log |ΣB |)). Thus, if X = |B∗| = O(µnB), the
runtime for the algorithm is exp(O(µnB log |ΣB |)).

Let c2 be a constant greater than one. If X ≤ c2c1µnB , then the runtime of
the algorithm is exp(O(µnB log |ΣB |)) as desired.

Since {Xb}b∈B are independent, using Chernoff bound, we have

Pr[X > c2c1µnB] = Pr[X > c2E[X]]

<

(
ec2−1

(c2)c2

)nBc1µ
= e−nBc1(c2(log c2−1)+1)µ.

Now, consider each a ∈ A. By going through all possible combinations of
assignments of vertices in B∗, we must go over the optimal assignment for B∗.
In the optimal assignment, if more than µ fraction of a’s neighbors is in B∗ (i.e.,

15

Ya > µda), then in step 3, we get the optimal assignment for a. Since {Xb}b∈N(a)

are independent, using Chernoff bound, we can obtain the following inequality.

Pr[Ya ≤ daµ] = Pr[Ya ≤
1

c1
E[Ya]]

<

 e
1
c1
−1(

1
c1

) 1
c1


dac1µ

= e−dac1(1−
1
c1
− 1
c1

log c1)µ.

Hence, we can conclude that the probability that this algorithm returns an
optimal solution within exp(O(µnB log |ΣB |))-time is at least

Pr

[(∧
a∈A

(Ya > daµ)

)
∧ (X ≤ c2c1µnB)

]
= 1− Pr

[(∨
a∈A

(Ya ≤ daµ)

)
∨ (X > c2c1µnB)

]

≥ 1−

(∑
a∈A

Pr[Ya > daµ]

)
− Pr[X > c2c1µnB]

> 1−

(∑
a∈A

e−dac1(1−
1
c1
− 1
c1

log c1)µ

)
− e−nBc1(c2(log c2−1)+1)µ

Since c1(1 − 1
c1
− 1

c1
log c1) and c1(c2(log c2 − 1) + 1) are constant, we can

define constants c3 = c1(1− 1
c1
− 1

c1
log c1) and c4 = c1(c2(log c2 − 1) + 1). The

probability that the algorithm returns an optimal solution can be written as

1− e−nBµc4 −
∑
a∈A

e−daµc3 .

Moreover, since we assume that da ≥ c lognA
µ for all a ∈ A, we can conclude

that the probability above is at least

1− e−nBµc4 −
∑
a∈A

e−cc3 lognA = 1− e−nBµc4 − nAe−cc3 lognA

= 1− e−nBµc4 − e−(cc3−1) lognA

Note that for any constants c∗3, c
∗
4, we can choose constants c1, c2 so that

c3 = c1(1− 1
c1
− 1

c1
log c1) ≥ c∗3 and c4 = c1(c2(log c2 − 1) + 1) ≥ c∗4. This means

that we can select c1 and c2 so that c3 ≥ 1
c+ 2

c lognA
∈ O(1) and c4 ≥ 2

nBµ
∈ O(1).

Note also that here we can assume that log nA > 0 since an instance is trivial
when nA = 1. Plugging c3 and c4 into the lower bound above, we can conclude
that, for this c1 and c2, the algorithm gives the optimal solution in the desired
runtime with probability more than 2/3.

16

5.2 Deterministic Approximation Algorithm For General Degrees

A deterministic version of the above algorithm is shown below. In this algorithm,
we are able to achieve a O(1) approximation ratio within asymptotically the
same runtime as the algorithm above. In contrast to the previous algorithm, this
algorithm works even when the degrees of the vertices are small.

The idea of the algorithm is that, instead of randomly picking a subset B∗ of
B, we will deterministically pick B∗. We say that a vertex a ∈ A is saturated if
more than µ fraction of its neighbors are in B∗, i.e. |N(a) ∩B∗| > µda. In each
step, we pick a vertex in B that neighbors the most unsaturated vertices, and
add it to B∗. We do this until a constant fraction of the edges are satisfied.

Lemma 6. There exists an exp(O(µnB log |ΣB |)) · poly(nA, |ΣA|)-time O(1)-
approximation algorithm for satisfiable µ-smooth projection game instances.

Proof. Without loss of generality, µ ≥ 1/da for all a ∈ A. Otherwise, µ-smoothness
is the same as uniqueness, and one can find the optimal assignment for all the a’s
with µ < 1/da in polynomial time (similarly to solving fully satisfiable instances
of unique games in polynomial time).

Let c1 be a real number between 0 and 1.

The algorithm can be described in the following steps.

1. Set B∗ ← ∅.
2. Let S be the set of all saturated vertices, i.e. S = {a ∈ A | |N(a) ∩ B∗| >
µda}. As long as |

∑
a∈S da| < c1|E|:

(a) Pick a vertex b∗ ∈ B−B∗ with maximal |N(b)−S|. Set B∗ ← B∗∪{b∗}.
3. Iterate over all possible assignments to the vertices in B∗:

(a) For each saturated vertex a ∈ S, search for an assignment that satisfies
all edges in {a} × (N(a) ∩ B∗). If, for any saturated vertex a ∈ S,
this assignment cannot be found, skip the next part and go to the next
assignment for B∗.

(b) Assign each vertex in B an assignment in ΣB that satisfies the maximum
number of edges that touch it.

(c) Assign arbitrary elements from ΣA to the vertices in A that are not yet
assigned.

4. Output the assignment that satisfies the maximum number of edges.

We will divide the proof into two steps. First, we will show that the number
of edges satisfied by the output assignment is at least c1|E|. Second, we will show
that the runtime for this algorithm is exp(O(µnB log |ΣB |)) · poly(nA, |ΣA|).

Observe that since we are going through all the possible assignments of B∗,
we must go through the optimal assignment. Focus on this assignment. From
the smoothness property, for each saturated vertex a ∈ S, there is exactly one
assignment that satisfies all the edges to B∗; this assignment is the optimal
assignment. Since we have the optimal assignments for all a ∈ S, we can satisfy
all the edges with one endpoint in S; the output assignment satisfies at least

17

∑
a∈S da edges. Moreover, when the algorithm terminates, the condition in step

2 must be false. Thus, we can conclude that
∑
a∈S da ≥ c1|E|. As a result, the

algorithm gives an approximation ratio of 1
c1

= O(1).

Since we go through all possible assignments for B∗, the runtime of this
algorithm is |ΣB |O(|B∗|) · poly(nA, |ΣA|). In order to prove that the runtime is
exp(O(µn log |ΣB |)) ·poly(nA, |ΣA|), we only need to show that |B∗| = O(µnB).

When the algorithm picks a vertex b∗ ∈ B to B∗ we say that it hits all its
neighbors that are unsaturated. Consider the total number of hits to all the
vertices in A. Since saturated vertices do not get hit any more, we can conclude
that each vertex a ∈ A gets at most µda + 1 hits. As a result, the total number
of hits to all vertices a ∈ A is at most

∑
a∈A

(µda + 1) = µ|E|+ nA.

Next, consider the set B∗. Let B∗ = {b1, . . . , bm} where b1, · · · , bm are sorted
by the time, from the earliest to the latest, they get added into B∗. Let v(bi)
equals to the number of hits bi makes. Since the total number of hits by B∗

equals the total number of hits to A, from the bound we established above, we
have

m∑
i=1

v(bi) ≤ µ|E|+ nA.

Now, consider the adding of bi to B∗. Let B∗i be {b1, . . . , bi−1}, the set B∗ at
the time right before bi is added to B∗, and let Si be {a ∈ A | |N(a)∩B∗i | > µda},
the set of saturated vertices at the time right before bi is added to B∗. Since we
are picking bi from B − B∗i with the maximum number of hits, the number of
hits from bi is at least the average number of possible hits over all vertices in
B −B∗i . That is

v(bi) = |N(bi)− Si|

≥ 1

|B −B∗i |

 ∑
b∈B−B∗i

|N(b)− Si|


≥ 1

nB

(∑
b∈B

|N(b)− Si|

)
−

∑
b∈B∗i

|N(b)− Si|

 .

18

We can also derive the following inequality.∑
b∈B

|N(b)− Si| =
∑
b∈B

∑
a∈N(b)−Si

1

=
∑
b∈B

∑
a∈A−Si

1(a,b)∈E

=
∑

a∈A−Si

∑
b∈B

1(a,b)∈E

=
∑

a∈A−Si

da

= |E| −

(∑
a∈Si

da

)
> (1− c1)|E|.

Note that the last inequality comes from the condition in step 2 of the algorithm.
Moreover, we have

∑
b∈B∗i

|N(b)− Si| =
i−1∑
j=1

|N(bj)− Si|

(Since Sj ⊆ Si) ≤
i−1∑
j=1

|N(bj)− Sj |

=

i−1∑
j=1

v(bj)

≤
m∑
j=1

v(bj)

≤ µ|E|+ nA.

Putting them together, we have

v(bi) >
1

nB
((1− c1)|E| − µ|E| − nA)

for all i = 1, . . . ,m
From this and from

∑m
i=1 v(bi) ≤ µ|E|+ nA, we can conclude that

m <
µ|E|+ nA

1
nB

((1− c1)|E| − µ|E| − nA)

= nBµ

(
1 + nA

|E|µ

(1− c1)− µ− nA
|E|

)
.

19

Consider the term
1+

nA
|E|µ

(1−c1)−µ−
nA
|E|

. Since µ = O(1) and nA
|E| = O(1), we can con-

clude that the denominator is Θ(1).

Consider nA
|E|µ . We have

|E|µ =
∑
a∈A

µda.

Since we assume that da ≥ 1/µ for all a ∈ A, we have nA = O(|E|µ). In other
words, nA

|E|µ = O(1). Hence, we can conclude that the numerator is Θ(1).

As a result, we can deduce that m = O(µnB). Thus, the running time for
the algorithm is O(µnB log |ΣB |), which concludes our proof.

6 PTAS for Projection Games on Planar Graphs

The NP-hardness of projection games on planar graphs is proved by reduction
from 3-coloring on planar graphs. The latter was proven to be NP-hard by Garey,
Johnson and Stockmeyer [10].

Theorem 5. Label Cover on planar graphs is NP-hard.

Proof. We will prove this by reducing from 3-colorability problem on planar
graph, which was proven by Garey, Johnson and Stockmeyer to be NP-hard [10].
The problem can be formally stated as following.

Planar Graph 3-Colorability: Given a planar graph Ǧ = (V̌ , Ě), de-
cide whether it is possible to assign each node a color from {red, blue, green}
such that, for each edge, its endpoints are of different colors.

Note that even though Ǧ is an undirected graph, we will represent each edge
as a tuple (u, v) ∈ Ě where u, v ∈ V̌ . We will never swap the order of the two
endpoints within this proof.

We will create an instance of projection game (A,B,E,ΣA, ΣB , {πe}e∈E) as
follows.

– Let A = Ě and B = V̌ .
– E = {(a, b) ∈ A×B | b is an endpoint of a with respect to Ǧ}.
– ΣA = {(red, blue), (red, green), (blue, red), (blue, green), (green, red), (green, blue)}

and ΣB = {red, blue, green}.
– For each e = (u, v) ∈ Ě = A, let π(e,u) : (c1, c2) → c1 and π(e,v) : (c1, c2) →
c2, i.e., π(e,u) and π(e,v) are projections to the first and the second element
of the tuple respectively.

It is obvious that G = (A,B,E) is a planar graph since A,B are Ě, V̌ re-
spectively and there exists an edge between a ∈ A and b ∈ B if and only if node
corresponding to b in V̌ is an endpoint of an edge corresponding to a in Ě. This
means that we can use the same planar embedding from the original graph Ǧ
except that each node represent a node from B and at each edge, we put in

20

a node from A corresponding to that edge. It is also clear that the size of the
projection game is polynomial of the size of Ǧ.

The only thing left to show is to prove that (A,B,E,ΣA, ΣB , {πe}e∈E) is
satisfiable if and only if Ǧ is 3-colorable.

(⇒) Suppose that (A,B,E,ΣA, ΣB , {πe}e∈E) is satisfiable. Let σu be the
assignment for each vertex u ∈ A∪B that satisfies all the edges in the projection
game. We will show that by assigning σv to v for all v ∈ V̌ = B, we are able
to color Ǧ with 3 colors such that, for each edge, its endpoints are of different
color.

Since V̌ = B, σv ∈ {red, blue, green} for all v ∈ V̌ . Thus, this is a valid
coloring. To see that no two endpoints of any edge are of the same color, consider
an edge e = (u, v) ∈ Ě = A. From definition of E, we have (e, u) ∈ E and
(e, v) ∈ E. Moreover, from definition of π(e,u) and π(e,v), we can conclude that
σe = (σu, σv). Since σe ∈ ΣA, we can conclude that σu 6= σv as desired.

Thus, Ǧ is 3-colorable.
(⇐) Suppose that Ǧ is 3-colorable. In a valid coloring scheme, let cv be a

color of node v for each v ∈ V̌ = B. Define the assignment of the projection
game ϕA, ϕB as follows

ϕA(a) = (cu, cv) for all a = (u, v) ∈ A = Ě,

ϕB(b) = cb for all b ∈ B = V̌ .

Since cu 6= cv for all (u, v) ∈ Ě, we can conclude that the range of ϕA
is a subset of ΣA. Moreover, it is clear that the range of ϕB is a subset of
ΣB . As a result, the assignment defined above is valid. Moreover, it is obvious
that πe(ϕA(a)) = ϕB(b) for all e = (a, b) ∈ E. Hence, the projection game
(A,B,E,ΣA, ΣB , {πe}e∈E) is satisfiable.

As a result, we can conclude that Label Cover on planar graph is NP-hard.

Next, we will describe PTAS for projection game instances on planar graph
and prove Theorem 4. We use the framework presented by Klein for finding
PTAS for problems on planar graphs [15] to one for satisfiable instances of the
projection games problem. The algorithm consists of the following two steps:

1. Thinning Step: Delete edges from the original graph to obtain a graph
with bounded treewidth.

2. Dynamic Programming Step: Use dynamic programming to solve the
problem in the bounded treewidth graph.

6.1 Tree Decomposition

Before we proceed to the algorithm, we first define tree decomposition. A tree
decomposition of a graph G = (V,E) is a collection of subsets {B1, B2, . . . , Bn}
and a tree T whose nodes are Bi such that

1. V = B1 ∪B2 ∪ · · · ∪Bn.
2. For each edge (u, v) ∈ E, there exists Bi such that u, v ∈ Bi.

21

3. For each Bi, Bj , if they have an element v in common. Then v is in every
subset along the path in T from Bi to Bj .

The width of a tree decomposition ({B1, B2, . . . , Bn}, T) is the largest size of
B1, . . . , Bn minus one. The treewidth of a graph G is the minimum width across
all possible tree decompositions.

6.2 Thinning

Even though a planar graph itself does not necessarily have a bounded treewidth,
it is possible to delete a small set of edges from the graph to obtain a graph with
bounded treewidth. Since the set of edges that get deleted is small, if we are
able to solve the modified graph, then we get a good approximate answer for the
original graph.

Klein has proved the following lemma in his paper [15].

Lemma 7. For any planar graph G = (V,E) and integer k, there is a linear-
time algorithm returns an edge-set S such that |S| ≤ 1

k |E|, a planar graph H,
such that H − S = G− S, and a tree decomposition of H having width at most
3k.

By selecting k = 1+ 1
ε , we can conclude that the number of edges in H−S =

G− S is at least
(
1− 1

k

)
|E| = 1

1+ε |E|.
Moreover, since a tree decomposition of a graph is also a tree decomposition

of its subgraph, we can conclude that the linear-time algorithm in the lemma
gives tree decomposition for G−S = H−S which is a subgraph of H with width
at most 3k = 3(1 + 1

ε).

6.3 Dynamic Programming

In this section, we will present a dynamic programming algorithm that solves
the projection game problem in a bounded treewidth bipartite graph G′ =
(A′, B′, E′) and projections πe : ΣA → ΣB for each e ∈ E′, given its tree
decomposition ({B1, . . . , Bn}, T) with a bounded width w.

The algorithm works as follows. We use depth first search to traverse the tree
T . Then, at each node Bi, we solve the problem concerning only the subtree of
T starting at Bi.

At Bi, we consider all possible assignments φ : Bi → (ΣA ∪ ΣB) of Bi. For
each assignment φ and for each edge (u, v) ∈ E′ such that both u, v are in Bi,
we check whether the condition π(u,v)(φ(u)) = φ(v) is satisfied or not. If not,
we conclude that this assignment does not satisfy all the edges. Otherwise, we
check that the assignment φ works for each subtree of T starting at each child
Bj of Bi in T ; this result was memoized when the algorithm solved the problem
at Bj .

Let a be a two-dimensional array such that a[Bi][φ] is true if an assignment
φ is possible considered only a subtree starting from Bi and a[Bi][φ] is false
otherwise. The pseudo-code for the algorithm is shown below.

22

Dynamic-Programming (Bi)

1 for each children Bj of Bi in T
2 Dynamic-Programming(Bj)
3 for each assignment φ of all elements of Bi
4 possible ← True
5 for each edge (u, v) ∈ E′
6 if u, v ∈ Bi and π(u,v)(φ(u)) 6= φ(v)
7 possible← False
8 for each children Bj of Bi in T
9 agree← False

10 for each assignment φ′ of Bj
11 if φ(x) = φ′(x) for all x ∈ Bi ∩Bj
12 if a[Bj][φ

′] is True
13 agree← True
14 if agree is False
15 possible← False
16
17 a[Bi][φ]← possible

We start by calling the function with the root of T as an input.

To analyze the runtime of the algorithm, first observe that there are (|ΣA|+
|ΣB |)|Bi| possible assignments for Bi. Since the width of this tree decomposition
is at most w, we can conclude that |Bi| ≤ w+ 1. Thus, for each Bi, there are at
most (|ΣA|+ |ΣB |)w+1 assignments for it.

For each assignment φ, we check all the edges in the original graph whether
π(u,v)(φ(u)) = φ(v) or not. There are |E′| such edges to check.

Moreover, for each edge (Bi, Bj) in T , we need to check whether the assign-
ment in Bi agrees with any feasible assignment in Bj or not. This means that we
perform at most (|ΣA| + |ΣB |)2w+2 of these checks. In addition, in each check,
we check that assignments for Bi and Bj agrees for all vertices in Bi ∩ Bj or
not. This takes at most O(|Bi|+ |Bj |) ≤ O(w + 1) = O(w) time.

As a result, the overall runtime for this algorithm isO(n|E′|(|ΣA|+|ΣB |)w+1+
nw(|ΣA|+ |ΣB |)2w+2).

Please note that, once Dynamic-Programming finishes, we can similarly
use depth first search one more time to find an assignment φ that satisfies the
whole graph. The pseudo-code for doing this is shown below. φ is first initiated to
be null. Then the procedure Answer is run on the root of T . After the program
finishes, φ will get filled with an assignment that satisfies all the edges in E′.

23

Answer (Bi)

1 for each assignment φ′ of all elements of Bi
2 if a[Bi][φ

′] is True
3 agree← True
4 for each v ∈ Bi
5 if φ(v) 6= Null and φ(v) 6= φ′(v)
6 agree← False
7 if agree is True
8 for each v ∈ Bi
9 φ(v)← φ′(v)

10 Break
11 for each children Bj of Bi in T
12 Answer(Bj)

It is easy to see that the Answer procedure runs in O(nw(|ΣA|+ |ΣB |)w+1)
time which is asymptotically smaller than the runtime of the Dynamic-programming
procedure.

6.4 Summary

By using the dynamic programming algorithm presented above to solve a graph
G′ = G − S got from the thinning step, since the instance is satisfiable, all the
edges in G − S can be satisfied. Thus, it gives an assignment that satisfies at
least 1

1+ε fraction of the edges in the original graph.
Moreover, if we treat ε as a constant, the width w in the tree decomposition is

at most 3
(
1 + 1

ε

)
which is a constant. Thus, the dynamic programming algorithm

runs in polynomial-time.
This gives us polynomial-time approximation scheme for satisfiable instances

of the projection game problem as desired.

References

1. Arora, S., Barak, B., and Steurer, D. Subexponential algorithms for unique
games and related problems. In Proc. 51st IEEE Symp. on Foundations of Com-
puter Science (2010).

2. Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. Proof
verification and the hardness of approximation problems. Journal of the ACM 45,
3 (1998), 501–555.

3. Arora, S., and Safra, S. Probabilistic checking of proofs: a new characterization
of NP. Journal of the ACM 45, 1 (1998), 70–122.

4. Babai, L., Fortnow, L., Levin, L. A., and Szegedy, M. Checking computa-
tions in polylogarithmic time. In Proc. 23rd ACM Symp. on Theory of Computing
(1991), pp. 21–32.

5. Babai, L., Fortnow, L., and Lund, C. Nondeterministic exponential time has
two-prover interactive protocols. Computational Complexity 1 (1991), 3–40.

24

6. Bellare, M., Goldreich, O., and Sudan, M. Free bits, PCPs, and
nonapproximability—towards tight results. SIAM J. Comput. 27, 3 (1998), 804–
915.

7. Charikar, M., Hajiaghayi, M., and Karloff, H. Improved approximation
algorithms for label cover problems. In In ESA (2009), Springer, pp. 23–34.

8. Dinur, I., and Steurer, D. Analytical approach to parallel repetition. Tech.
Rep. 1305.1979, arXiv, 2013.

9. Feige, U. A threshold of lnn for approximating set cover. Journal of the ACM
45, 4 (1998), 634–652.

10. Garey, M. R., Johnson, D. S., and Stockmeyer, L. Some simplified np-
complete problems. In Proceedings of the sixth annual ACM symposium on Theory
of computing (New York, NY, USA, 1974), STOC ’74, ACM, pp. 47–63.

11. Håstad, J. Some optimal inapproximability results. Journal of the ACM 48, 4
(2001), 798–859.

12. Holmerin, J., and Khot, S. A new PCP outer verifier with applications to
homogeneous linear equations and max-bisection. In Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing (New York, NY, USA,
2004), STOC ’04, ACM, pp. 11–20.

13. Khot, S. Hardness results for coloring 3-colorable 3-uniform hypergraphs. In
Proc. 43rd IEEE Symp. on Foundations of Computer Science (2002), pp. 23–32.

14. Khot, S. On the power of unique 2-prover 1-round games. In Proc. 34th ACM
Symp. on Theory of Computing (2002), pp. 767–775.

15. Klein, P. N. A linear-time approximation scheme for TSP for planar weighted
graphs. In In Proceedings, 46th IEEE Symposium on Foundations of Computer
Science (2005), pp. 146–155.

16. Moshkovitz, D. The projection games conjecture and the NP-hardness of lnn-
approximating set-cover. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques - 15th International Workshop, AP-
PROX 2012 (2012), vol. 7408, pp. 276–287.

17. Moshkovitz, D., and Raz, R. Two query PCP with sub-constant error. Journal
of the ACM 57, 5 (2010).

18. Peleg, D. Approximation algorithms for the label-cover max and red-blue set
cover problems. J. of Discrete Algorithms 5, 1 (Mar. 2007), 55–64.

19. Raz, R. A parallel repetition theorem. In SIAM J. Comput. (1998), vol. 27,
pp. 763–803.

25

Appendix

A Polynomial-time Approximation Algorithms for
Projection Games for Nonuniform Preimage Sizes

In this section, we will describe a polynomial time O((nA|ΣA|)
1
4)-approximation

algorithm for satisfiable projection games, including those with nonuniform preim-
age sizes.

It is not hard to see that, if the pe’s are not all equal, then “know your neigh-
bors’ neighbors” algorithm does not necessarily end up with at least hmax/p
fraction of satisfied edges anymore. The reason is that, for a vertex a with large
|N2(a)| and any assignment σa ∈ ΣA to the vertex, the number of preimages
in π−1e (π(a,b)(σa)) might be large for each neighbor b of a and each edge e that
has an endpoint b. We solve this issue, by instead of using all the edges for the
algorithm, only using “good” edges whose preimage sizes for the optimal assign-
ments are at most a particular value. However, this definition of “good” does
not only depend on an edge but also on the assignment to the edge’s endpoint
in B, which means that we need to have some extra definitions to address the
generalization of h and p as follows.

σmaxb for each b ∈ B, denotes σb ∈ Σb that maximizes the value of∑
a∈N(b) |π

−1
(a,b)(σb)|.

pmaxe for each edge e = (a, b), denotes
∣∣π−1e (σmaxb)

∣∣, the size of the
preimage of e if b is assigned σmaxb .

pmax denotes the average of pmaxe over all e ∈ E, i.e. 1
|E|
∑
e∈E p

max
e .

We will use 2pmax as a thershold for determining “good” edges
as we shall see below.

E(S) for each set of vertices S, denotes the set of edges with at least
one endpoint in S, i.e. {(u, v) ∈ E | u ∈ S or v ∈ S}.

EmaxN denotes the maximum number of edges coming out of N(a) for
all a ∈ A, i.e., maxa∈A{|E(N(a))|}.

E′ denotes the set of all edges e ∈ E such that pe ≤ 2pmax, i.e.,
E′ = {e ∈ E | pe ≤ 2pmax}.

G′ denotes a subgraph of G with its edges being E′.
E′(S) for each set of vertices S, denotes the set of all edges in E′ with

at least one endpoint in S, i.e., {(u, v) ∈ E′ | u ∈ S or v ∈ S}.
E′S for each set of vertices S, denotes the set of edges with both

endpoints in S, i.e. E′S = {(a, b) ∈ E′ | a ∈ S and b ∈ S}.
N ′(u) for each vertex u, denotes the set of vertices that are neighbors of

u in the graph G′.
N ′(U) for each set of vertices U , denotes the set of vertices that are

neighbors of at least one vertex in U in the graph G′.
N ′2(u) for each vertex u, denotes N ′(N ′(u)), the set of neighbors of

neighbors of u in G′.

26

Σ∗A(a) for each a ∈ A, denotes the set of all assignments σa to a that, for
every b ∈ B, there exists an assignment σb such that, if a is assigned σa,
b is assigned σb and all a’s neighbors are assigned according to a, then
there are still possible assignments left for all vertices in N2(a) ∩N(b),
i.e., {σa ∈ ΣA | for each b ∈ B, there is σb ∈ ΣB such that, for all

a′ ∈ N2(a) ∩N(b),
(⋂

b′∈N(a′)∩N(a) π
−1
(a′,b′)(π(a,b′)(σa))

)
∩ π−1(a′,b)(σb) 6= ∅}.

Note that σOPTa ∈ Σ∗A(a). In other words, if we replace ΣA with Σ∗A(a)
for each a ∈ A, then the resulting instance is still satisfiable.

N∗(a, σa) for each a ∈ A and σa ∈ Σ∗A(a), denotes {b ∈ N(a) | |π−1(a′,b)(π(a,b)(σa))|
≤ 2pmax for some a′ ∈ N(b)}. Provided that we assign σa to a, this set
contains all the neighbors of a with at least one good edge as we
discussed above. Note that π(a,b)(σa) is the assignment to b
corresponding to the assignment of a.

N∗2 (a, σa) for each a ∈ A and σa ∈ Σ∗A(a), denotes all the neighbors of neighbors
of a with at least one good edge with another endpoint in N(a) when a
is assigned σa, i.e.,

⋃
b∈N∗(a,σa){a

′ ∈ N(b) | |π−1(a′,b)(π(a,b)(σa))| ≤ 2pmax}.
h∗(a, σa) for each a ∈ A and σa ∈ Σ∗A(a), denotes |E(N∗2 (a, σa))|. In other words,

h∗(a, σa) represents how well N∗2 (a, σa) spans the graph G.
E∗(a, σa) for each a ∈ A and σa ∈ Σ∗A(a), denotes {(a′, b) ∈ E | b ∈ N∗(a, σa),

a′ ∈ N∗2 (a, σa) and |π−1(a′,b)(π(a,b)(σa))| ≤ 2pmax}. When a is assigned σa,

this is the set of all good edges with one endpoint in N(a).
h∗max denotes maxa∈A,σa∈Σ∗A(a) h

∗(a, σa).

From the definitions above, we can derive two very useful observations as
stated below.

Observation 1. |E′| ≥ |E|2

Proof. Suppose for the sake of contradiction that |E′| < |E|
2 . From the definition

of E′, this means that, for more than |E|
2 edges e, we have pe > 2pmax. As a

result, we can conclude that

|E|pmax <
∑
e∈E

pe

=
∑
b∈B

∑
a∈N(b)

p(a,b)

=
∑
b∈B

∑
a∈N(b)

|π−1(a,b)(σ
OPT
b)|

≤
∑
b∈B

∑
a∈N(b)

|π−1(a,b)(σ
max
b)|

= |E|pmax.

This is a contradiction. Hence, |E′| ≥ |E|2 .

27

Observation 2. If σa = σOPTa , then N∗(a, σa) = N ′(a), N∗2 (a, σa) = N ′2(a)
and E∗(a, σa) = E′(N ′(a)).

This observation is obvious since, when pluging in σOPTa , each pair of defini-
tions of N∗(a, σa) and N ′(a), N∗2 (a, σa) and N ′2(a), and E∗(a, σa) and E′(N ′(a))
becomes the same.

Note also that from its definition, G′ is the graph with good edges when the
optimal assignments are assigned to B. Unfortunately, we do not know the opti-
mal assignments to B and, thus, do not know how to find G′ in polynomial time.
However, directly from the definitions above, σmaxb , pmaxe , pmax, EmaxN , Σ∗A(a),
N∗(a, σa), N∗2 (a, σa), h∗(a, σa) and h∗max can be computed in polynomial time.
These notations will be used in the upcoming algorithms. Other defined nota-
tions we do not know how to compute in polynomial time and will only be used
in the analyses.

For the nonuniform preimage sizes case, we use five algorithms as opposed
to four algorithms used in uniform case. We will proceed to describe those five
algorithms. In the end, by using the best of these five, we are able to produce a
polynomial-time O

(
(nA|ΣA|)1/4

)
-approximation algorithm as desired.

Now, we will list the algorithms along with their rough descriptions; detailed
description and analysis of each algorithm will follow later on:

1. Satisfy one neighbor – |E|/nB-approximation. Assign each vertex in A
an arbitrary assignment. Each vertex in B is then assigned to satisfy one of
its neighboring edges. This algorithm satisfies at least nB edges.

2. Greedy assignment – |ΣA|/pmax-approximation. Each vertex in B is
assigned an assignment σb ∈ ΣB that has the largest number of preimages
across neighboring edges

∑
a∈N(b) |π

−1
(a,b)(σb)|. Each vertex in A is then as-

signed so that it satisfies as many edges as possible. This algorithm works
well when ΣB assignments have many preimages.

3. Know your neighbors – |E|/EmaxN -approximation. For a vertex a0 ∈ A,
pick an element of Σ∗A(a0) and assign it to a0. Assign its neighbors N(a0)
accordingly. Then, for each node in N2(a0), we find one assignment that
satisfies all the edges between it and vertices in N(a0).

4. Know your neighbors’ neighbors – |E|pmax/h∗max-approximation. For
a vertex a0 ∈ A, we go over all possible assignments in Σ∗A(a) to it. For each
assignment, we assign its neighbors N(a0) accordingly. Then, for each node
in N2(a0), we keep only the assignments that satisfy all the edges between
it and vertices in N(a0).
When a0 is assigned the optimal assignment, the number of choices for each
node in N∗2 (a0) is reduced to at most 2pmax possibilities. In this way, we can
satisfy 1/2pmax fraction of the edges that touch N∗2 (a0). This satisfies many
edges when there exists a0 ∈ A such that N∗2 (a0) spans many edges.

5. Divide and Conquer – O(nAnB(h∗max + EmaxN)/|E|2)-approximation.
For every a ∈ A, we can fully satisfy N∗(a) ∪N∗2 (a) efficiently, and give up
on satisfying other edges that touch this subset. Repeating this process, we
can satisfy Ω(|E|2/(nAnB(h∗max + EmaxN))) fraction of the edges.

28

Aside from the new “know your neighbors” algorithm, the main idea of each
algorithm remains the same as in the uniform preimage sizes case. All the details
of each algorithm are described below.

Satisfy One Neighbor Algorithm. The algorithm is exactly the same as that
of the uniform case.

Lemma 8. For satisfiable instances of projection games, an assignment that
satisfies at least nB edges can be found in polynomial time, which gives the

approximation ratio of |E|nB .

Proof. The proof is exactly the same as that of Lemma 1.

Greedy Assignment Algorithm. The algorithm is exactly the same as that
of the uniform case.

Lemma 9. There exists a polynomial-time |ΣA|
pmax -approximation algorithm for

satisfiable instances of projection games.

Proof. The proof of this lemma differs only slightly from the proof of Lemma 2.
The algorithm works as follows:

1. For each b, assign it σ∗b that maximizes
∑
a∈N(b) |π

−1
(a,b)(σb)|.

2. For each a, assign it σ∗a that maximizes the number of edges satisfied, |{b ∈
N(a) | π(a,b)(σa) = σ∗b}|.

Let e∗ be the number of edges that get satisfied by this algorithm. We have

e∗ =
∑
a∈A
|{b ∈ N(a) | π(a,b)(σ∗a) = σ∗b}|.

By the second step, for each a ∈ A, the number of edges satisfied is at least
an average of the number of edges satisfied over all assignments in ΣA. This can
be written as follows.

e∗ =
∑
a∈A
|{b ∈ N(a) | π(a,b)(σ∗a) = σ∗b}|

≥
∑
a∈A

∑
σa∈ΣA |{b ∈ N(a) | π(a,b)(σa) = σ∗b}|

|ΣA|

=
∑
a∈A

∑
b∈N(a) |π

−1
(a,b)(σ

∗
b)|

|ΣA|

=
1

|ΣA|
∑
a∈A

∑
b∈N(a)

|π−1(a,b)(σ
∗
b)|.

29

From the definition of σmaxb , we can conclude that σ∗b = σmaxb for all b ∈ B.
As a result, we can conclude that

e∗ ≥ 1

|ΣA|
∑
a∈A

∑
b∈N(a)

|π−1(a,b)(σ
∗
b)|

=
1

|ΣA|
∑
a∈A

∑
b∈N(a)

|π−1(a,b)(σ
max
b)|

=
1

|ΣA|
∑
a∈A

∑
b∈N(a)

pmax(a,b)

=
1

|ΣA|
|E||pmax|

=
pmax

|ΣA|
|E|.

Hence, this algorithm satisfies at least pmax

|ΣA| fraction of the edges, which

concludes our proof.

Know Your Neighbors Algorithm

The next algorithm shows that one can satisfy all the edges with one endpoint
in the neighbors of a vertex a0 ∈ A.

Lemma 10. For each a0 ∈ A, there exists a polynomial time |E|
|E(N(a0))| -approximation

algorithm for satisfiable instances of projection games.

Proof. The algorithm works as follows:

1. Pick any assignment σa0 ∈ Σ∗A(a0) and assign it to a0:
2. Assign σb = π(a0,b)(σa0) to b for all b ∈ N(a0).
3. For each a ∈ N2(a0), find the set of plausible assignments to a, i.e., Sa =
{σa ∈ ΣA | ∀b ∈ N(a) ∩ N(a0), π(a,b)(σa) = σb}. Pick one σ∗a from this set
and assign it to a. Note that Sa 6= ∅ from the definition of Σ∗A(a0).

4. Assign any assignment to unassigned vertices.
5. Output the assignment {σ∗a}a∈A, {σ∗b}b∈B from the previous step.

From step 3, we can conclude that all the edges in E(N(a0)) get statisfied.

This yields |E|
|E(N(a0))| approximation ratio as desired.

Know Your Neighbors’ Neighbors Algorithm

The next algorithm shows that if the neighbors of neighbors of a vertex a0 ∈ A
expand, then one can satisfy many of the (many!) edges that touch the neighbors
of a0’s neighbors. While the core idea is similar to the uniform version, in this
version, we will need to consider N∗2 (a0, σa0) instead of N2(a0) in order to ensure
that the number of possible choices left for each vertex in this set is at most
2pmax.

30

Lemma 11. For each a0 ∈ A and σa0 ∈ Σ∗A(a0), there exists a polynomial-

time O
(
|E|pmax
h∗(a0,σa0)

)
-approximation algorithm for satisfiable instances of projec-

tion games.

Proof. To prove Lemma 11, we first fix a0 ∈ A and σa0 ∈ Σ∗A(a0). We will de-

scribe an algorithm that satisfies Ω
(
h∗(a0,σa0)

pmax

)
edges, which implies the lemma.

The algorithm works as follows:

1. Assign σb = π(a0,b)(σa0) to b for all b ∈ N(a0).
2. For each a ∈ A, find the set of plausible assignments to a, i.e., Sa = {σa ∈
ΣA | ∀b ∈ N(a) ∩ N(a0), π(a,b)(σa) = σb}. Note that Sa 6= ∅ from the
definition of Σ∗A(a0).

3. For all b ∈ B, pick an assignment σ∗b for b that maximizes the average number
of satisfied edges over all assignments in Sa to vertices a in N(b) ∩N∗2 (a0),
i.e., maximizes

∑
a∈N(b)∩N∗2 (a0)

|π−1(a,b)(σb) ∩ Sa|.
4. For each vertex a ∈ A, pick an assignment σ∗a ∈ Sa that maximizes the

number of satisfied edges, |{b ∈ N(a) | π(a,b)(σa) = σ∗b}| over all σa ∈ Sa.

We will prove that this algorithm indeed satisfies at least
h∗(a0,σa0)

pmax edges.
Let e∗ be the number of edges satisfied by the algorithm. We have

e∗ =
∑
a∈A
|{b ∈ N(a) | π(a,b)(σ∗a) = σ∗b}|.

Since for each a ∈ A, the assignment σ∗a is chosen to maximize the number of
edges satisfied, we can conclude that the number of edges satisfied by selecting
σ∗a is at least the average of the number of edges satisfied over all σa ∈ Sa.

As a result, we can conclude that

e∗ ≥
∑
a∈A

∑
σa∈Sa |{b ∈ N(a) | π(a,b)(σa) = σ∗b}|

|Sa|

=
∑
a∈A

∑
σa∈Sa

∑
b∈N(a) 1π(a,b)(σa)=σ

∗
b

|Sa|

=
∑
a∈A

∑
b∈N(a)

∑
σa∈Sa 1π(a,b)(σa)=σ

∗
b

|Sa|

=
∑
a∈A

∑
b∈N(a) |π

−1
(a,b)(σ

∗
b) ∩ Sa|

|Sa|

=
∑
b∈B

∑
a∈N(b)

|π−1(a,b)(σ
∗
b) ∩ Sa|
|Sa|

≥
∑
b∈B

∑
a∈N(b)∩N∗2 (a0,σa0)

|π−1(a,b)(σ
∗
b) ∩ Sa|
|Sa|

31

From the definition of N∗2 (a0, σa0), we can conclude that, for each a ∈
N∗2 (a0, σa0), there exists b′ ∈ N∗(a0) ∩ N(a) such that |π−1(a,b′)(σb′)| ≤ 2pmax.

Moreover, from the definition of Sa, we have Sa ⊆ π−1(a,b′)(σb′). As a result, we

can arrive at the following inequalities.

|Sa| ≤ |π−1(a,b′)(σb′)|

≤ 2pmax.

This implies that

e∗ ≥ 1

2pmax

∑
b∈B

∑
a∈N(b)∩N∗2 (a0,σa0)

|π−1(a,b)(σ
∗
b) ∩ Sa|.

From the definition of Σ∗A(a0), we can conclude that, for each b ∈ B, there
exists σb ∈ B such that π−1(a,b)(σb) ∩ Sa 6= ∅ for all a ∈ N2(a0) ∩ N(b). Since

N∗2 (a0, σa0) ⊆ N2(a0), we can conclude that |π−1(a,b)(σb) ∩ Sa| ≥ 1 for all a ∈
N∗2 (a0, σa0) ∩N(b).

Since we pick the assignment σ∗b that maximizes
∑
a∈N(b)∩N∗2 (a0)

|π−1(a,b)(σ
∗
b)∩

Sa| for each b ∈ B, we can conclude that

e∗ ≥ 1

2pmax

∑
b∈B

∑
a∈N(b)∩N∗2 (a0,σa0)

|π−1(a,b)(σ
∗
b) ∩ Sa|

≥ 1

2pmax

∑
b∈B

∑
a∈N(b)∩N∗2 (a0,σa0)

|π−1(a,b)(σb) ∩ Sa|

≥ 1

2pmax

∑
b∈B

∑
a∈N(b)∩N∗2 (a0,σa0)

1.

The last term can be rewritten as

1

2pmax

∑
b∈B

∑
a∈N(b)∩N∗2 (a0,σa0)

1 =
1

2pmax

∑
a∈N∗2 (a0,σa0)

∑
b∈N(a)

1

=
1

2pmax

∑
a∈N∗2 (a0,σa0)

da

=
h∗(a0, σa0)

2pmax
.

As a result, we can conclude that this algorithm gives an assignment that sat-

isfies at least
h∗(a0,σa0)

2pmax edges out of all the |E| edges. Hence, this is a polynomial-

time O
(
|E|pmax
h∗(a0,σa0)

)
-approximation algorithm as desired.

32

Divide and Conquer Algorithm. We will present an algorithm that separates
the graph into disjoint subgraphs for which we can find the optimal assignments
in polynomial time. We shall show below that, if h∗(a, σa) is small for all a ∈ A
and σa ∈ Σ∗A(a), then we are able to find such subgraphs that contain most of
the graph’s edges.

Lemma 12. There exists a polynomial-time O
(
nAnB(h∗max+E

max
N)

|E|2

)
-approximation

algorithm for satisfiable instances of projection games.

Proof. To prove this lemma, we will present an algorithm that gives an assign-

ment that satisfies Ω
(

|E|3
nAnB(h∗max+E

max
N)

)
edges.

We use P to represent the collection of subgraphs we find. The family P
consists of disjoint sets of vertices. Let VP be

⋃
P∈P P .

For any set S of vertices, define GS to be the graph induced on S with
respect to G. Moreover, define ES to be the set of edges of GS . We also define
EP =

⋃
P∈P EP . Note that ES is similar to E′S defined earlier in the appendix.

The only difference is that E′S is with respect to G′ instead of G.
The algorithm works as follows.

1. Set P ← ∅.
2. While there exists a vertex a ∈ A and σa ∈ Σ∗A(a) such that

|E∗(a, σa) ∩ E(A∪B)−VP | ≥
1

16

|E|2

nAnB
:

(a) Set P ← P ∪ {(N∗2 (a, σa) ∪N∗(a, σa))− VP}.
3. For each P ∈ P, find in time poly(|ΣA|, |P |) an assignment to the vertices

in P that satisfies all the edges spanned by P . This can be done easily by
assigning σa to a and π(a,b)(σa) to b ∈ B ∩ P . Then assign any plausible
assignment to all the other vertices in A ∩ P .

We will divide the proof into two parts. First, we will show that when we
cannot find a vertex a and an assignment σa ∈ Σ∗A(a) in step 2,

∣∣E(A∪B)−VP
∣∣ ≤

3|E|
4 . Second, we will show that the resulting assignment from this algorithm

satisfies Ω
(

|E|3
nAnB(h∗max+E

max
N)

)
edges.

We will start by showing that, if no vertex a and an assignment σa ∈ Σ∗A(a)

in step 2 exist, then
∣∣E(A∪B)−VP

∣∣ ≤ 3|E|
4 .

Suppose that we cannot find a vertex a and an assignment σa ∈ Σ∗A(a) in

step 2. In other words, |E∗(a, σa) ∩ E(A∪B)−VP | < 1
16
|E|2
nAnB

for all a ∈ A and
σa ∈ Σ∗A(a).

Since σOPTa ∈ Σ∗A(a) for all a ∈ A, we can conclude that

|E∗(a, σOPTa) ∩ E(A∪B)−VP | <
1

16

|E|2

nAnB
.

33

From Observation 2, we have E∗(a, σOPT) = E′(N ′(a)). As a result, we have

1

16

|E|2

nAnB
> |E∗(a, σOPTa) ∩ E(A∪B)−VP |

= |E′(N ′(a)) ∩ E(A∪B)−VP |

for all a ∈ A.
Since E′(N ′(a)) = E′N ′(a)∪N ′2(a)

, we can rewrite the last term as

|E′(N ′(a)) ∩ E(A∪B)−VP | = |E
′
N ′(a)∪N ′2(a)

∩ E(A∪B)−VP |

= |E′N ′(a)∪N ′2(a)−VP |.

Consider
∑
a∈A |E′N ′(a)∪N ′2(a)−VP |. Since |E′N ′(a)∪N ′2(a)−VP | <

1
16
|E|2
nAnB

for all

a ∈ A, we have the following inequality:

|E|2

16nB
>
∑
a∈A
|E′N ′(a)∪N ′2(a)−VP |.

Let Np(v) = N ′(v)−VP and Np
2 (v) = N ′2(v)−VP . Similary, define Np(S) for

a subset S ⊆ A∪B. It is easy to see that Np
2 (v) ⊇ Np(Np(v)). This implies that,

for all a ∈ A, we have |E′
Np(a)∪Np2 (a)

| ≥ |E′Np(a)∪Np(Np(a))|. Moreover, it is easy

to see that, for all a ∈ A− VP , we have |E′Np(a)∪Np(Np(a))| =
∑
b∈Np(a) |Np(b)|.

Thus, the following holds:∑
a∈A
|E′(N ′(a)∪N ′2(a))−VP | =

∑
a∈A
|E(Np(a)∪Np2 (a))|

≥
∑

a∈A−VP

|E(Np(a)∪Np2 (a))|

=
∑

a∈A−VP

∑
b∈Np(a)

|Np(b)|

=
∑

b∈B−VP

∑
a∈Np(b)

|Np(b)|

=
∑

b∈B−VP

|Np(b)|2.

From Jensen’s inequality, we have

∑
a∈A
|E′(N ′(a)∪N ′2(a))−VP | ≥

1

|B − VP |

(∑
b∈B−VP

|Np(b)|

)2

=
1

|B − VP |

∣∣∣E′(A∪B)−VP

∣∣∣2
≥ 1

nB

∣∣∣E′(A∪B)−VP

∣∣∣2 .
34

Since |E|2
16nB

≥
∑
a∈A |E(N ′(a)∪N ′2(a))−VP | and

∑
a∈A |E(N ′(a)∪N ′2(a))−VP | ≥

1
nB

∣∣∣E′(A∪B)−VP

∣∣∣2, we can conclude that

|E|
4
≥
∣∣∣E′(A∪B)−VP

∣∣∣ .
Consider E′(A∪B)−VP and E(A∪B)−VP . We have

E′(A∪B)−VP ∪ (E − E′) ⊇ E(A∪B)−VP∣∣∣E′(A∪B)−VP

∣∣∣+ |E − E′| ≥
∣∣E(A∪B)−VP

∣∣
|E|
4

+ |E − E′| ≥
∣∣E(A∪B)−VP

∣∣ .
From Observation 1, we have |E′| ≥ |E|2 . Thus, we have

3|E|
4
≥
∣∣E(A∪B)−VP

∣∣ ,
which concludes the first part of the proof.

Next, we will show that the assignment the algorithm finds satisfies at least

Ω
(

|E|3
nAnB(h∗max+E

max
N)

)
edges. Since we showed that 3|E|

4 ≥
∣∣E(A∪B)−VP

∣∣ when

the algorithm terminates, it is enough to prove that |EP | ≥ |E|2
16nAnB(h∗max+E

max
N)

(
|E| −

∣∣E(A∪B)−VP
∣∣).

Note that the algorithm guarantees to satisfy all the edges in EP .
We will prove this by using induction to show that at any point in the algo-

rithm, |EP | ≥ |E|2
16nAnB(h∗max+E

max
N)

(
|E| −

∣∣E(A∪B)−VP
∣∣).

Base Case. At the beginning, we have |EP | = 0 = |E|2
16nAnB(h∗max+E

max
N)

(
|E| −

∣∣E(A∪B)−VP
∣∣),

which satisfies the inequality.
Inductive Step. The only step in the algorithm where any term in the in-

equality changes is step 2a. Let Pold and Pnew be the set P before and after
step 2a is executed, respectively. Let a be the vertex selected in step 2. Suppose
that Pold satisfies the inequality.

Since |EPnew | = |EPold |+ |E(N∗(a,σa)∪N∗2 (a,σa))−VPold |, we have

|EPnew | = |EPold |+ |E(N∗(a,σa)∪N∗2 (a,σa))−VPold |
= |EPold |+ |E(N∗(a,σa)∪N∗2 (a,σa)) ∩ E(A∪B)−VPold |.

From the condition in step 2, we have |E∗(a, σa)∩E(A∪B)−VPold | ≥
1
16
|E|2
nAnB

.

Moreover, E(N∗(a,σa)∪N∗2 (a,σa)) ⊇ E
∗(a, σa) holds. As a result, we have

|EPnew | = |EPold |+ |E(N∗(a,σa)∪N∗2 (a,σa)) ∩ EA∪B−VPold |
≥ |EPold |+ |E∗(a, σa) ∩ E(A∪B)−VPold |

≥ |EPold |+
1

16

|E|2

nAnB
.

35

Now, consider
(
|E| − |E(A∪B)−VPnew |

)
−
(
|E| − |E(A∪B)−VPold |

)
. We have(

|E| − |E(A∪B)−VPnew |
)
−
(
|E| − |E(A∪B)−VPold |

)
= |E(A∪B)−VPold | − |E(A∪B)−VPnew |

Since VPnew = VPold ∪ (N∗2 (a, σa) ∪N∗(a, σa)), we can conclude that

((A ∪B)− VPold) ⊆ ((A ∪B)− VPnew) ∪ (N∗2 (a, σa) ∪N∗(a, σa)) .

Thus, we can also derive

E(A∪B)−VPold ⊆ E((A∪B)−VPnew)∪(N∗2 (a,σa)∪N∗(a,σa))

= E(A∪B)−VPnew ∪ {(a
′, b′) ∈ E | a′ ∈ N∗2 (a, σa) or b′ ∈ N∗(a, σa)}.

Moreover, we can write {(a′, b′) ∈ E | a′ ∈ N∗2 (a, σa) or b′ ∈ N∗(a, σa)} as
{(a′, b′) ∈ E | a′ ∈ N∗2 (a, σa)}∪{(a′, b′) ∈ E | b′ ∈ N∗(a, σa)}. Since N∗(a, σa) ⊆
N(a), we can conclude that

{(a′, b′) ∈ E | a′ ∈ N∗2 (a, σa) or b′ ∈ N∗(a, σa)} ⊆{(a′, b′) ∈ E | a′ ∈ N∗2 (a, σa)}
∪ {(a′, b′) ∈ E | b′ ∈ N(a)}.

Thus, we can conclude that

|{(a′, b′) ∈ E | a′ ∈ N∗2 (a, σa) or b′ ∈ N∗(a, σa)}| ≤ |{(a′, b′) ∈ E | a′ ∈ N∗2 (a, σa)}|
+ |{(a′, b′) ∈ E | b′ ∈ N(a)}|

= h∗(a, σa) + |E(N(a))|.

Hence, we can conclude that∣∣∣E(A∪B)−VPold

∣∣∣ ≤ ∣∣E(A∪B)−VPnew ∪ {(a
′, b′) ∈ E | a′ ∈ N2(a) or b′ ∈ N(a)}

∣∣
≤
∣∣E(A∪B)−VPnew

∣∣+ |{(a′, b′) ∈ E | a′ ∈ N2(a) or b′ ∈ N(a)}|
≤
∣∣E(A∪B)−VPnew

∣∣+ h∗(a, σa) + |E(N(a))|
≤
∣∣E(A∪B)−VPnew

∣∣+ h∗max + EmaxN .

This implies that
(
|E| −

∣∣E(A∪B)−VP
∣∣) increases by at most h∗max + EmaxN .

Hence, since
(
|E| −

∣∣E(A∪B)−VP
∣∣) increases by at most h∗max + EmaxN and

|EP | increases by at least 1
16
|E|2
nAnB

and from the inductive hypothesis, we can
conclude that

|EPnew | ≥
|E|2

16nAnB(h∗max + EmaxN)

(
|E| −

∣∣E(A∪B)−VPnew

∣∣) .
Thus, the inductive step is true and the inequality holds at any point during

the execution of the algorithm.

When the algorithm terminates, since |EP | ≥ |E|2
16nAnB(h∗max+E

max
N)

(
|E| −

∣∣E(A∪B)−VP
∣∣)

and 3|E|
4 ≥

∣∣E(A∪B)−VP
∣∣, we can conclude that |EP | ≥ |E|3

64nAnB(h∗max+E
max
N) . Since

the algorithm guarantees to satisfy every edge in EP , it yields anO
(
nAnB(h∗max+E

max
N)

|E|2

)
approximation ratio, which concludes our proof of Lemma 12.

36

Proof of Theorem 2

Proof. Using Lemma 11 with a0 and σa0 that maximizes the value of h∗(a0, σa0),
i.e., h∗(a0, σa0) = h∗max, we can conclude that there exists a polynomial-time

O
(
|E|pmax
h∗max

)
-approximation algorithm for satisfiable instances of projection games.

Similarly, from Leamma 10 with a0 that maximizes the value of E(N(a0)),

i.e., |E(N(a0))| = EmaxN , there exists a polynomial-time |E|
EmaxN

-approximation

algorithm for satisfiable instances of projection games.

Moreover, from Lemmas 8, 9 and 12, there exists a polynomial-time |E|nB -

approximation algorithm, a polynomial-time |ΣA|pmax -approximation algorithm and

a polynomial time O
(
nAnB(h∗max+E

max
N)

|E|2

)
-approximation algorithm for satisfi-

able instances of the projection game.
Consider the following two cases.
First, if h∗max ≥ EmaxN , we haveO(nAnB(h∗max+EmaxN)/|E|2) = O(nAnBh

∗
max/|E|2).

Using the best of the first, second, fourth and fifth algorithms, the smallest of
the four approximation factors is at most as large as their geometric mean, i.e.,

O

(
4

√
|E|
nB
· |ΣA|
pmax

· |E|p
max

h∗max
· nAnBh

∗
max

|E|2

)
= O((nA|ΣA|)1/4).

Second, if EmaxN > h∗max, we haveO(nAnB(h∗max+EmaxN)/|E|2) = O(nAnBE
max
N /|E|2).

We use the best answer we get from the first, second, third and fifth algorithms.
The smallest of the four approximation factors is at most as large as their geo-
metric mean, i.e.,

O

(
4

√
|E|
nB
· |ΣA|
pmax

· |E|
EmaxN

·
nAnBEmaxN

|E|2

)
= O

((
nA|ΣA|
pmax

)1/4
)
.

It is obvious that pmax is at least one. Thus, we can conclude that the approxi-
mation factor is at most O((nA|ΣA|)

1
4).

This concludes the proof of Theorem 2 for the nonuniform preimage sizes
case.

37

	Improved Approximation Algorithms for Projection Games

