1,991 research outputs found
Events, processes, and the time of a killing
The paper proposes a novel solution to the problem of the time of a killing (ToK), which persistently besets theories of act-individuation. The solution proposed claims to expose a crucial wrong-headed assumption in the debate, according to which ToK is essentially a problem of locating some event that corresponds to the killing. The alternative proposal put forward here turns on recognizing a separate category of dynamic occurents, viz. processes. The paper does not aim to mount a comprehensive defense of process ontology, relying instead on extant defenses. The primary aim is rather to put process ontology to work in diagnosing the current state of play over ToK, and indeed in solving it
Ion cyclotron wall conditioning experiments on Tore Supra in presence of the toroidal magnetic field
Wall conditioning techniques applicable in the presence of the high toroidal magnetic field will be required for the operation of ITER for tritium removal, isotopic ratio control and recovery to normal operation after disruptions. Recently ion cyclotron wall conditioning (ICWC) experiments have been carried out on Tore Supra in order to assess the efficiency of this technique in ITER relevant conditions. The ICRF discharges were operated in He/H-2 Mixtures at the Tore Supra nominal field (3.8 T) and a RF frequency of 48 MHz, i.e. within the ITER operational space. RF pulses of 60 s (max.) were applied using a standard Tore Supra two-strap resonant double loop antenna in ICWC mode, operated either in pi or 0-phasing with a noticeable improvement of the RF coupling in the latter case. In order to assess the efficiency of the technique for the control of isotopic ratio the wall was first preloaded using a D-2 glow discharge. After 15 minutes of ICWC in He/H-2 gas mixtures the isotopic ratio was altered from 4% to 50% at the price of an important H implantation into the walls. An overall analysis comparing plasma production and the conditioning efficiency as a function of discharge parameters is given
Telepresence and the Role of the Senses
The telepresence experience can be evoked in a number of ways. A well-known example is a player of videogames who reports about a telepresence experience, a subjective experience of being in one place or environment, even when physically situated in another place. In this paper we set the phenomenon of telepresence into a theoretical framework. As people react subjectively to stimuli from telepresence, empirical studies can give more evidence about the phenomenon. Thus, our contribution is to bridge the theoretical with the empirical. We discuss theories of perception with an emphasis on Heidegger, Merleau-Ponty and Gibson, the role of the senses and the Spinozian belief procedure. The aim is to contribute to our understanding of this phenomenon. A telepresence-study that included the affordance concept is used to empirically study how players report sense-reactions to virtual sightseeing in two cities. We investigate and explore the interplay of the philosophical and the empirical. The findings indicate that it is not only the visual sense that plays a role in this experience, but all senses
Precision Measurement of the Weak Mixing Angle in Moller Scattering
We report on a precision measurement of the parity-violating asymmetry in
fixed target electron-electron (Moller) scattering: A_PV = -131 +/- 14 (stat.)
+/- 10 (syst.) parts per billion, leading to the determination of the weak
mixing angle \sin^2\theta_W^eff = 0.2397 +/- 0.0010 (stat.) +/- 0.0008 (syst.),
evaluated at Q^2 = 0.026 GeV^2. Combining this result with the measurements of
\sin^2\theta_W^eff at the Z^0 pole, the running of the weak mixing angle is
observed with over 6 sigma significance. The measurement sets constraints on
new physics effects at the TeV scale.Comment: 4 pages, 2 postscript figues, submitted to Physical Review Letter
Determination of Matter Surface Distribution of Neutron-rich Nuclei
We demonstrate that the matter density distribution in the surface region is
determined well by the use of the relatively low-intensity beams that become
available at the upcoming radioactive beam facilities. Following the method
used in the analyses of electron scattering, we examine how well the density
distribution is determined in a model-independent way by generating pseudo data
and by carefully applying statistical and systematic error analyses. We also
study how the determination becomes deteriorated in the central region of the
density, as the quality of data decreases. Determination of the density
distributions of neutron-rich nuclei is performed by fixing parameters in the
basis functions to the neighboring stable nuclei. The procedure allows that the
knowledge of the density distributions of stable nuclei assists to strengthen
the determination of their unstable isotopes.Comment: 41 pages, latex, 27 figure
Conserving pattern and process in the Southern Ocean: designing a Marine Protected Area for the Prince Edward Islands
South Africa is currently proclaiming a Marine Protected Area (MPA) in the Exclusive Economic Zone (EEZ) of its sub-Antarctic Prince Edward Islands. The objectives of the MPA are to: 1) contribute to a national and global representative system of MPAs, 2) serve as a scientific reference point to inform future management, 3) contribute to the recovery of the Patagonian toothfish (Dissostichus eleginoides), and 4) reduce the bird bycatch of the toothfish fishery, particularly of albatrosses and petrels. This study employs systematic conservation planning methods to delineate a MPA within the EEZ that will conserve biodiversity patterns and processes within sensible management boundaries, while minimizing conflict with the legal toothfish fishery. After collating all available distributional data on species, benthic habitats and ecosystem processes, we used C-Plan software to delineate a MPA with three management zones: four IUCN Category Ia reserves (13% of EEZ); two Conservation Zones (21% of EEZ); and three Category IV reserves (remainder of EEZ). Compromises between conservation target achievement and the area required by the MPA are apparent in the final reserve design. The proposed MPA boundaries are expected to change over time as new data become available and as impacts of climate change become more evident
Precision Determination of the Neutron Spin Structure Function g1n
We report on a precision measurement of the neutron spin structure function
using deep inelastic scattering of polarized electrons by polarized
^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2,
we obtain at an average . We find relatively large negative
values for at low . The results call into question the usual Regge
theory method for extrapolating to x=0 to find the full neutron integral
, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let
Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors
Precision sound velocity measurements can simultaneously determine binary gas
composition and flow. We have developed an analyzer with custom electronics,
currently in use in the ATLAS inner detector, with numerous potential
applications. The instrument has demonstrated ~0.3% mixture precision for
C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and
high flow versions of the instrument have demonstrated flow resolutions of +/-
2% F.S. for flows up to 250 l.min-1, and +/- 1.9% F.S. for linear flow
velocities up to 15 ms-1; the latter flow approaching that expected in the
vapour return of the thermosiphon fluorocarbon coolant recirculator being built
for the ATLAS silicon tracker.Comment: Paper submitted to TWEPP2012; Topical Workshop on Electronics for
Particle Physics, Oxford, UK, September 17-21, 2012. KEYWORDS: Sonar;
Saturated fluorocarbons; Flowmetry; Sound velocity, Gas mixture analysis. 8
pages, 7 figure
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
- …
