10,238 research outputs found

    Skills, government intervention and business performance: implications for the regional skills partnership (RSP)

    Get PDF
    The aim of this briefing paper is to provide an understanding of the factors that determine the level of skills in the economy, the level and type of skills demanded by employers, and how these are translated into performance improvements by individual employees. The paper deals with these questions at the national and regional level, at the level of the firm and finally of the individual employee. It then uses this knowledge to identify the range of alternative measures available to policy makers

    Comparing models of the periodic variations in spin-down and beam-width for PSR B1828-11

    Full text link
    We build a framework using tools from Bayesian data analysis to evaluate models explaining the periodic variations in spin-down and beam-width of PSR B1828-11. The available data consists of the time averaged spin-down rate, which displays a distinctive double-peaked modulation, and measurements of the beam-width. Two concepts exist in the literature that are capable of explaining these variations; we formulate predictive models from these and quantitatively compare them. The first concept is phenomenological and stipulates that the magnetosphere undergoes periodic switching between two meta-stable states as first suggested by Lyne et al. The second concept, precession, was first considered as a candidate for the modulation of B1828-11 by Stairs et al.. We quantitatively compare models built from these concepts using a Bayesian odds-ratio. Because the phenomenological switching model itself was informed by this data in the first place, it is difficult to specify appropriate parameter-space priors that can be trusted for an unbiased model comparison. Therefore we first perform a parameter estimation using the spin-down data, and then use the resulting posterior distributions as priors for model comparison on the beam-width data. We find that a precession model with a simple circular Gaussian beam geometry fails to appropriately describe the data, while allowing for a more general beam geometry provides a good fit to the data. The resulting odds between the precession model (with a general beam geometry) and the switching model are estimated as 102.7±0.510^{2.7 \pm 0.5} in favour of the precession model.Comment: 20 pages, 15 figures; removed incorrect factor of (2\pi) from equation (15), allowed for arbitrary braking index, and revised prior ranges; overall conclusions unchange

    Neutron Star Merger Remnants: Braking Indices, Gravitational Waves, and the Equation Of State

    Full text link
    The binary neutron star merger GW170817/GRB170817A confirmed that at least some neutron star mergers are the progenitors of short gamma-ray bursts. Many short gamma-ray bursts have long-term x-ray afterglows that have been interpreted in terms of post-merger millisecond magnetars---rapidly rotating, highly magnetised, massive neutron stars. We review our current understanding of millisecond magnetars born in short gamma-ray bursts, focusing particularly three main topics. First, whether millisecond magnetars really do provide the most plausible explain for the x-ray plateau. Second, determining and observing the gravitational-wave emission from these remnants. Third, determining the equation of state of nuclear matter from current and future x-ray and gravitational-wave measurements.Comment: Conference Proceedings of the Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy (January 3 - 7, 2019, Xiamen, China

    Metallurgy of armour exhibited at the Palace Armoury, Valletta, Malta

    Get PDF
    The metallurgy of ten armour pieces from the Palace Armoury Collection in Malta was examined. Results showed that out of ten artefacts examined, six were produced in low carbon steel, one from a high carbon steel and three were made from wrought iron. One of the wrought iron armour pieces was fabricated from a phosphoric iron, an unusual material for these artefacts. All the steel artefacts exhibited a ferrite-pearlite microstructure. In their manufacture, no attempts had been made at producing martensite by full or slack quenching. All metal fragments contained slag inclusions. The elongated nature of the latter suggested that these artefacts were forged into shape.peer-reviewe

    The effect of timing noise on targeted and narrow-band coherent searches for continuous gravitational waves from pulsars

    Full text link
    Most searches for continuous gravitational-waves from pulsars use Taylor expansions in the phase to model the spin-down of neutron stars. Studies of pulsars demonstrate that their electromagnetic (EM) emissions suffer from \emph{timing noise}, small deviations in the phase from Taylor expansion models. How the mechanism producing EM emission is related to any continuous gravitational-wave (CW) emission is unknown; if they either interact or are locked in phase then the CW will also experience timing noise. Any disparity between the signal and the search template used in matched filtering methods will result in a loss of signal-to-noise ratio (SNR), referred to as `mismatch'. In this work we assume the CW suffers a similar level of timing noise to its EM counterpart. We inject and recover fake CW signals, which include timing noise generated from observational data on the Crab pulsar. Measuring the mismatch over durations of order 10\sim 10 months, the effect is for the most part found to be small. This suggests recent so-called `narrow-band' searches which placed upper limits on the signals from the Crab and Vela pulsars will not be significantly affected. At a fixed observation time, we find the mismatch depends upon the observation epoch. Considering the averaged mismatch as a function of observation time, we find that it increases as a power law with time, and so may become relevant in long baseline searches.Comment: 9 pages, 5 figure

    The vector innovation structural time series framework: a simple approach to multivariate forecasting

    Get PDF
    The vector innovation structural time series framework is proposed as a way of modelling a set of related time series. Like all multi-series approaches, the aim is to exploit potential inter-series dependencies to improve the fit and forecasts. A key feature of the framework is that the series are decomposed into common components such as trend and seasonal effects. Equations that describe the evolution of these components through time are used as the sole way of representing the inter-temporal dependencies. The approach is illustrated on a bivariate data set comprising Australian exchange rates of the UK pound and US dollar. Its forecasting capacity is compared to other common single- and multi-series approaches in an experiment using time series from a large macroeconomic database.Vector innovation structural time series, state space model, multivariate time series, exponential smoothing, forecast comparison, vector autoregression.

    Storage stability of whole and nibbed, conventional and high oleic peanuts (<i>Arachis hypogeae </i>L.)

    Get PDF
    Peanuts are increasingly being used as nibbed ingredients in cereal bars, confectionery and breakfast cereals. However, studies on their oxidative stability in this format are limited. Storage trials to determine the stability to oxidation were carried out on whole and nibbed kernels of conventional (CP) and high oleic (HOP) peanuts, with respect to temperature and modified atmosphere packaging. HOP exhibited the highest oxidative stability, with a lag phase in whole kernels of 12–15 weeks before significant oxidation occurred. HOP also showed higher levels of intrinsic antioxidants, a trolox equivalent antioxidant capacity (TEAC) of 70 mMol equivalence and radical scavenging percentage (RSP) of 99.8 % at the beginning of storage trials, whereas CP showed values of 40 mMol and 81.2 %, respectively. The intrinsic antioxidants at the beginning of these storage trials were shown to affect the peroxide value (PV), where RSP and TEAC decreased, and PV increased. Therefore, in peanuts the processing format (nibbed or whole) had the highest influence on susceptibility of lipid oxidation, highest to lowest importance: processing format &gt; temperature &gt; atmospheric conditions

    Exploring shoreface dynamics and a mechanistic explanation for a morphodynamic depth of closure

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 121 (2016): 442–464, doi:10.1002/2015JF003699.Using energetics-based formulations for wave-driven sediment transport, we develop a robust methodology for estimating the morphodynamic evolution of a cross-shore sandy coastal profile. In our approach, wave-driven cross-shore sediment flux depends on three components: two onshore-directed terms (wave asymmetry and wave streaming) and an offshore-directed slope term. In contrast with previous work, which applies shallow water wave assumptions across the transitional zone of the lower shoreface, we use linear Airy wave theory. The cross-shore sediment transport formulation defines a dynamic equilibrium profile and, by perturbing about this steady state profile, we present an advection-diffusion formula for profile evolution. Morphodynamic Péclet analysis suggests that the shoreface is diffusionally dominated. Using this depth-dependent characteristic diffusivity timescale, we distinguish a morphodynamic depth of closure for a given time envelope. Even though wave-driven sediment transport can (and will) occur at depths deeper than this morphodynamic closure depth, the rate of morphologic bed changes in response to shoreline change becomes asymptotically slow. Linear wave theory suggests a shallower shoreface depth of closure and much sharper break in processes than shallow water wave assumptions. Analyzing hindcasted wave data using a weighted frequency-magnitude approach, we determine representative wave conditions for selected sites along the U.S. coastline. Computed equilibrium profiles and depths of closure demonstrate reasonable similarities, except where inheritance is strong. The methodology espoused in this paper can be used to better understand the morphodynamics at the lower shoreface transition with relative ease across a variety of sites and with varied sediment transport equations.This research has been supported by the National Science Foundation grant CNH-0815875, the Strategic Environment Research and Development Program, and the Coastal Ocean Institute of the Woods Hole Oceanographic Institution.2016-08-2

    Instability and finite-amplitude self-organization of large-scale coastline shapes

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 371 (2013):20120363, doi:10.1098/rsta.2012.0363.Recent research addresses the formation of patterns on sandy coastlines on alongshore scales that are large compared with the cross-shore extent of active sediment transport. A simple morphodynamic instability arises from the feedback between wave-driven alongshore sediment flux and coastline shape. Coastline segments with different orientations experience different alongshore sediment fluxes, so that curvatures in coastline shape drive gradients in sediment flux, which can augment the shoreline curvatures. In a simple numerical model, this instability, and subsequent finite-amplitude interactions between pattern elements, lead to a wide range of different rhythmic shapes and behaviours—ranging from symmetric cuspate capes and bays to alongshore migrating ‘flying spits’—depending on the characteristics of the input wave forcing. The scale of the pattern coarsens in some cases because of the merger of migrating coastline features, and in other cases because of non-local screening interactions between coastline protrusions, which affect the waves reaching other parts of the coastline. Features growing on opposite sides of an enclosed water body mutually affect the waves reaching each other in ways that lead to the segmentation of elongated water bodies. Initial tests of model predictions and comparison with observations suggest that modes of pattern formation in the model are relevant in nature

    Diving Demand for Large Ship Artificial Reefs

    Get PDF
    Using data drawn from a web-based travel cost survey, we jointly model revealed and stated preference trip count data in an attempt to estimate the recreational use value from diving the intentionally sunk USS Oriskany. Respondents were asked to report their: (i) actual trips from the previous year, (ii) anticipated trips in the next year, and (iii) anticipated trips next year assuming a second diveable vessel (a Spruance class destroyer) is sunk in the same vicinity. Results from several different model specifications indicate average per-person, per-trip use values range from 480to480 to 750. The “bundling†of a second vessel in the area of the Oriskany to create a multiple-ship artificial reef area adds between 220and220 and 1,160 per diver per year in value.Artificial reefs, diving, recreation demand, combined revealed and stated preferences, non-market valuation, Institutional and Behavioral Economics, Marketing, Productivity Analysis, Public Economics, Research Methods/ Statistical Methods, Q26, Q50,
    corecore