292 research outputs found

    An Expanding Shell of Neutral Hydrogen Associated with SN 1006: Hints for the Single-Degenerate Origin and Faint Hadronic Gamma-Rays

    Get PDF
    We report new HI observations of the Type Ia supernova remnant SN 1006 using the Australia Telescope Compact Array with an angular resolution of 4.5′×1.4′4.5' \times 1.4' (∼\sim2 pc at the assumed SNR distance of 2.2 kpc). We find an expanding gas motion in position-velocity diagrams of HI with an expansion velocity of ∼\sim4 km s−1^{-1} and a mass of ∼\sim1000 M⊙M_\odot. The spatial extent of the expanding shell is roughly the same as that of SN 1006. We here propose a hypothesis that SN 1006 exploded inside the wind-blown bubble formed by accretion winds from the progenitor system consisting of a white dwarf and a companion star, and then the forward shock has already reached the wind wall. This scenario is consistent with the single-degenerate model. We also derived the total energy of cosmic-ray protons WpW_\mathrm{p} to be only ∼\sim1.2-2.0×10472.0 \times 10^{47} erg by adopting the averaged interstellar proton density of ∼\sim25 cm−3^{-3}. The small value is compatible with the relation between the age and WpW_\mathrm{p} of other gamma-ray supernova remnants with ages below ∼\sim6 kyr. The WpW_\mathrm{p} value in SN 1006 will possibly increase up to several 1049^{49} erg in the next ∼\sim5 kyr via the cosmic-ray diffusion into the HI wind-shell.Comment: 12 pages, 4 figures, 1 table, accepted for publication in The Astrophysical Journal (ApJ

    Isothermal remanent magnetization and the spin dimensionality of spin glasses

    Full text link
    The isothermal remanent magnetization is used to investigate dynamical magnetic properties of spatially three dimensional spin glasses with different spin dimensionality (Ising, XY, Heisenberg). The isothermal remanent magnetization is recorded vs. temperature after intermittent application of a weak magnetic field at a constant temperature ThT_h. We observe that in the case of the Heisenberg spin glasses, the equilibrated spin structure and the direction of the excess moment are recovered at ThT_h. The isothermal remanent magnetization thus reflects the directional character of the Dzyaloshinsky-Moriya interaction present in Heisenberg systems.Comment: tPHL2e style; 7 page, 3 figure

    Spin Glasses: Model systems for non-equilibrium dynamics

    Full text link
    Spin glasses are frustrated magnetic systems due to a random distribution of ferro- and antiferromagnetic interactions. An experimental three dimensional (3d) spin glass exhibits a second order phase transition to a low temperature spin glass phase regardless of the spin dimensionality. In addition, the low temperature phase of Ising and Heisenberg spin glasses exhibits similar non-equilibrium dynamics and an infinitely slow approach towards a thermodynamic equilibrium state. There are however significant differences in the detailed character of the dynamics as to memory and rejuvenation phenomena and the influence of critical dynamics on the behaviour. In this article, some aspects of the non-equilibrium dynamics of an Ising and a Heisenberg spin glass are briefly reviewed and some comparisons are made to other glassy systems that exhibit magnetic non-equilibrium dynamics.Comment: To appear in J. Phys.: Condens. Matter, Proceedings from HFM2003, Grenobl

    "Glassy Dynamics" in Ising Spin Glasses -- Experiment and Simulation

    Full text link
    The field-cooled magnetization (FCM) processes of Ising spin glasses under relatively small fields are investigated by experiment on Fe_{0.55}Mn_{0.45}TiO_3 and by numerical simulation on the three-dimensional Edwards-Anderson model. Both results are explained in a unified manner by means of the droplet picture. In particular, the cusp-like behavior of the FCM is interpreted as evidence, not for an equilibrium phase transition under a finite magnetic field, but for a dynamical (`blocking') transition frequently observed in glassy systems.Comment: 4 pages, 7 figure

    Aging, rejuvenation and memory effects in Ising and Heisenberg spin glasses

    Full text link
    We have compared aging phenomena in the Fe_{0.5}Mn_{0.5}TiO_3 Ising spin glass and in the CdCr_{1.7}In_{0.3}S_4 Heisenberg-like spin glass by means of low-frequency ac susceptibility measurements. At constant temperature, aging obeys the same `ωt\omega t scaling' in both samples as in other systems. Investigating the effect of temperature variations, we find that the Ising sample exhibits rejuvenation and memory effects which are qualitatively similar to those found in other spin glasses, indicating that the existence of these phenomena does not depend on the dimensionality of the spins. However, systematic temperature cycling experiments on both samples show important quantitative differences. In the Ising sample, the contribution of aging at low temperature to aging at a slightly higher temperature is much larger than expected from thermal slowing down. This is at variance with the behaviour observed until now in other spin glasses, which show the opposite trend of a free-energy barrier growth as the temperature is decreased. We discuss these results in terms of a strongly renormalized microscopic attempt time for thermal activation, and estimate the corresponding values of the barrier exponent ψ\psi introduced in the scaling theories.Comment: 8 pages, including 6 figure

    Time and length scales in spin glasses

    Full text link
    We discuss the slow, nonequilibrium, dynamics of spin glasses in their glassy phase. We briefly review the present theoretical understanding of the spectacular phenomena observed in experiments and describe new numerical results obtained in the first large-scale simulation of the nonequilibrium dynamics of the three dimensional Heisenberg spin glass.Comment: Paper presented at "Highly Frustrated Magnetism 2003", Grenoble, August 200

    Neutron scattering study of transverse magnetism

    Get PDF
    In order to clarify the nature of the additional phase transition at H1 (T) \u3c Hc (T) of the layered antiferromagnetic (AF) insulator FeBr2 as found by Aruga Katori et al. (1996) we measured the intensity of different Bragg-peaks in different scattering geometries. Transverse AF ordering is observed in both AF phases, AFI and AFII. Its order parameter exhibits a peak at T1 = T (H1) in temperature scans and does not vanish in zero field. Possible origins of the step-like increase of the transverse ferromagnetic ordering induced by a weak in-plane field component when entering AFI below T1 are discussed

    Aging, rejuvenation and memory phenomena in spin glasses

    Full text link
    In this paper, we review several important features of the out-of-equilibrium dynamics of spin glasses. Starting with the simplest experiments, we discuss the scaling laws used to describe the isothermal aging observed in spin glasses after a quench down to the low temperature phase. We report in particular new results on the sub-aging behaviour of spin glasses. We then discuss the rejuvenation and memory effects observed when a spin glass is submitted to temperature variations during aging, from the point of view of both energy landscape pictures and of real space pictures. We highlight the fact that both approaches point out the necessity of hierarchical processes involved in aging. Finally, we report an investigation of the effect of small temperature variations on aging in spin glass samples with various anisotropies which indicates that this hierarchy depends on the spin anisotropy.Comment: submitted for the Proceedings of Stat Phys 22, Bangalore (India

    Field-Shift Aging Protocol on the 3D Ising Spin-Glass Model: Dynamical Crossover between the Spin-Glass and Paramagnetic States

    Full text link
    Spin-glass (SG) states of the 3-dimensional Ising Edwards-Anderson model under a static magnetic field hh are examined by means of the standard Monte Carlo simulation on the field-shift aging protocol at temperature TT. For each process with (T; \tw, h), \tw being the waiting time before the field is switched on, we extract the dynamical crossover time, \tcr(T; \tw, h). We have found a nice scaling relation between the two characteristic length scales which are properly determined from \tcr and \tw and then are normalized by the static field crossover length introduced in the SG droplet theory. This scaling behavior implies the instability of the SG phase in the equilibrium limit even under an infinitesimal hh. In comparison with this numerical result the field effect on real spin glasses is also discussed.Comment: 4 pages, 5 figures, jpsj2, Changed conten
    • …
    corecore