1,069 research outputs found

    DER Participation in Ancillary Services Market: An Analysis of Current Trends and Future Opportunities

    Get PDF
    In an effort to push for low-carbon transition, national governments and regulatory authorities are working to define market structures and legislative frameworks able to effectively support the spreading of electricity production from renewables. To this purpose, the opening of national Ancillary Services Markets (ASMs) to Distributed Energy Resources (DERs) plays a key role. However, pricing schemes and rules in place (e.g., incentives) can act as a barrier to the supply of regulation services by small-sized and renewable-based power plants. In this context, the present work evaluates the economic opportunities for DERs provided by the provision of tertiary reserve and balancing control in the Italian ASM. The research is carried out through the collection and processing of price data from the Italian electricity and gas markets over 4 years (2019–2022). Considering a reference architecture where DER units bid on the market through a Balancing Service Provider, the potential revenues on the ASM of a non-programmable or partially programmable DER unit are compared to the earnings expected of a conventional power plant in order to highlight whether unfair competition can represent a barrier. Then, possible evolutions in the current remuneration schemes are analyzed, to evaluate whether they can be able to support a better DER integration. From the analysis, it emerges that, even if negative prices could be useful to increase the competitiveness of RES-based power plants for downward regulation, the loss of the incentives can act as a deterrent to the offering of services on the market by DERs. Therefore, other regulatory options, such as the incentives retention in case of downward regulation, could also be needed

    Lab and Field Tests of a Low-Cost 3-Component Seismometer for Shallow Passive Seismic Applications

    Get PDF
    We performed laboratory tests and field surveys to evaluate the performance of a low-cost 3-component seismometer, consisting of three passive electromagnetic spring-mass sensors, whose 4.5 Hz natural frequency is extended down to 0.5 Hz thanks to hyper damping. Both lab and field datasets show that the −3 dB band of the seismometer ranges approximately from 0.7 to 39 Hz, in agreement with the nominal specifications. Median magnitude frequency response curves obtained from processing field data indicate that lower corner of the −3 dB band could be extended down to 0.55 Hz and the nominal sensitivity may be overestimated. Lab results confirm the non-linear behavior of the passive spring-mass sensor expected for high-level input signals (a few to tens of mm/s) and field data confirm relative timing accuracy is ±10 ms (1 sample). We found that absolute timing of data collected with USB GPS antennas can be affected by lag as large as +0.5 s. By testing two identical units, we noticed that there could be differences around 0.5 dB (i.e., about 6%) between the components of the same unit as well as between the same component of the two units. Considering shallow passive seismic applications and mainly focusing on unstable slope monitoring, our findings show that the tested seismometer is able to identify resonance frequencies of unstable rock pillars and to generate interferograms that can be processed to estimate subsurface velocity variations

    Sex/Gender- and Age-Related Differences in β-Adrenergic Receptor Signaling in Cardiovascular Diseases

    Get PDF
    Sex differences in cardiovascular disease (CVD) are often recognized from experimental and clinical studies examining the prevalence, manifestations, and response to therapies. Compared to age-matched men, women tend to have reduced CV risk and a better prognosis in the premenopausal period. However, with menopause, this risk increases exponentially, surpassing that of men. Although several mechanisms have been provided, including sex hormones, an emerging role in these sex differences has been suggested for β-adrenergic receptor (β-AR) signaling. Importantly, β-ARs are the most important G protein-coupled receptors (GPCRs), expressed in almost all the cell types of the CV system, and involved in physiological and pathophysiological processes. Consistent with their role, for decades, βARs have been considered the first targets for rational drug design to fight CVDs. Of note, β-ARs are seemingly associated with different CV outcomes in females compared with males. In addition, even if there is a critical inverse correlation between β-AR responsiveness and aging, it has been reported that gender is crucially involved in this age-related effect. This review will discuss how β-ARs impact the CV risk and response to anti-CVD therapies, also concerning sex and age. Further, we will explore how estrogens impact β-AR signaling in women

    Deglacial landform assemblage records fast ice-flow and retreat, Inner Hebrides, Scotland

    Get PDF
    High-resolution bathymetric data have been central to recent advances in the understanding of past dynamics of the former British–Irish Ice Sheet (BIIS). As approximately two-thirds of the former BIIS was probably marine-based during the Last Glacial Maximum (LGM) (c. 29–23 ka), geomorphic observations of the seabed are required increasingly to understand the extent, pattern and timing of past glaciation. Until recently, glacial reconstructions for the Inner Hebrides, offshore of western Scotland, have been based primarily on terrestrial observations. Previous workers have proposed generalized reconstructions in which the Inner Hebrides are located within a significant former ice-sheet flow pathway that drained the western Scottish sector of the BIIS, feeding the Barra Fan during the LGM and earlier glaciations (Fig. 1). Results from numerical ice-sheet modelling suggest that former ice-flow velocities within the region were on the order of hundreds to thousands of metres per year, but yield further insight by demonstrating how dynamic binge/purge cycles may have affected ice-sheet mass balance over time (Hubbard et al. 2009). Following the LGM, ice-sheet retreat through the area is estimated to have been in the order of 20 m per year (Clark et al. 2012). Here we present swath-bathymetric data from the Inner Hebrides that provide in situ constraints on ice-sheet flow and subsequent retreat dynamics from within this important sector of the BIIS

    Stereodivergent Synthesis of 5-Aminopipecolic Acids and Application in the Preparation of a Cyclic RGD Peptidomimetic as a nanomolar αVβ3 Integrin Ligand

    Get PDF
    A stereodivergent strategy was devised to obtain enantiopure cis and trans 5-aminopipecolic acids (5-APAs) in suitably protected forms to be employed in peptide synthesis as conformationally constrained \u3b1- and \u3b4-amino acids. The cis isomer was used as a \u3b4-amino acid to construct a cyclic RGD-containing peptidomimetic, the ability of which to compete with biotinylated vitronectin for the binding to the isolated \u3b1V\u3b23 integrin was measured (IC50 = 4.2 \ub1 0.9 nM). A complete 1H NMR and computational conformational analysis was performed to elucidate the reasons for the high affinity of this cyclic peptidomimetic in comparison with Cilengitide

    Exosome determinants of physiological aging and age-related neurodegenerative diseases

    Get PDF
    Aging is consistently reported as the most important independent risk factor for neurodegenerative diseases. As life expectancy has significantly increased during the last decades, neurodegenerative diseases became one of the most critical public health problem in our society. The most investigated neurodegenerative diseases during aging are Alzheimer disease (AD), Frontotemporal Dementia (FTD) and Parkinson disease (PD). The search for biomarkers has been focused so far on cerebrospinal fluid (CSF) and blood. Recently, exosomes emerged as novel biological source with increasing interest for age-related neurodegenerative disease biomarkers. Exosomes are tiny Extracellular vesicles (EVs; 30\u2013100 nm in size) released by all cell types which originate from the endosomal compartment. They constitute important vesicles for the release and transfer of multiple (signaling, toxic, and regulatory) molecules among cells. Initially considered with merely waste disposal function, instead exosomes have been recently recognized as fundamental mediators of intercellular communication. They can move from the site of release by diffusion and be retrieved in several body fluids, where they may dynamically reflect pathological changes of cells present in inaccessible sites such as the brain. Multiple evidence has implicated exosomes in age-associated neurodegenerative processes, which lead to cognitive impairment in later life. Critically, consolidated evidence indicates that pathological protein aggregates, including A\u3b2, tau, and \u3b1-synuclein are released from brain cells in association with exosomes. Importantly, exosomes act as vehicles between cells not only of proteins but also of nucleic acids [DNA, mRNA transcripts, miRNA, and non-coding RNAs (ncRNAs)] thus potentially influencing gene expression in target cells. In this framework, exosomes could contribute to elucidate the molecular mechanisms underneath neurodegenerative diseases and could represent a promising source of biomarkers. Despite the involvement of exosomes in age-associated neurodegeneration, the study of exosomes and their genetic cargo in physiological aging and in neurodegenerative diseases is still in its infancy. Here, we review, the current knowledge on protein and ncRNAs cargo of exosomes in normal aging and in age-related neurodegenerative diseases

    Anti-inflammatory effects of fatty acid amide hydrolase inhibition in monocytes/macrophages from alzheimer’s disease patients

    Get PDF
    Growing evidence shows that the immune system is critically involved in Alzheimer’s disease (AD) pathogenesis and progression. The modulation and targeting of peripheral immune mechanisms are thus promising therapeutic or preventive strategies for AD. Given the critical involvement of the endocannabinoid (eCB) system in modulating immune functions, we investigated the potential role of the main elements of such a system, namely type-1 and type-2 cannabinoid receptors (CB1 and CB2), and fatty acid amide hydrolase (FAAH), in distinct immune cell populations of the peripheral blood of AD patients. We found that, compared to healthy controls, CB1 and CB2 expression was significantly lower in the B-lymphocytes of AD patients. Moreover, we found that CB2 was significantly lower and FAAH was significantly higher in monocytes of the same subjects. In contrast, T-lymphocytes and NK cells did not show any variation in any of these proteins. Of note, monocytic CB2 and FAAH levels significantly correlated with clinical scores. Furthermore, the pharmacological inactivation of FAAH in monocytes and monocyte-derived macrophages obtained from AD patients was able to modulate their immune responses, by reducing production of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-12, and enhancing that of the anti-inflammatory cytokine IL-10. Furthermore, FAAH blockade skewed AD monocyte-derived macrophages towards a more anti-inflammatory and pro-resolving phenotype. Collectively, our findings highlight a central role of FAAH in regulating AD monocytes/macrophages that could be of value in developing novel monocyte-centered therapeutic approaches aimed at promoting a neuroprotective environment

    Long-term hydrogeophysical monitoring of the internal conditions of river levees

    Get PDF
    To evaluate the vulnerability of the earthen levee of an irrigation canal in San Giacomo delle Segnate, Italy, a customized electrical resistivity tomography (ERT) monitoring system was installed in September 2015 and has been continuously operating since then. Thanks to a meteorological station deployed at the study site, we could investigate the relationship between the inverted resistivity values and different parameters, namely air temperature, rainfall and water level in the canal. Air temperature seems to have a minor but not negligible influence on resistivity variations, especially at shallow depth. A model of soil temperature versus depth was used to correct resistivity sections for air temperature variations through the different seasons. Changes of the water level in the canal and rainfall significantly affect measured resistivity values. At the study site, the most important variations of resistivity are related to saturation and dewatering processes in the irrigation periods. Although we explored the effect of drawdown procedures on resistivity data, this process, causing rapid variations of resistivity values, is still not completely understood because the canal is rapidly emptied during rainfall events. Therefore, the effect of variations of the water level in the canal on levee resistivity cannot be distinguished from the effect of rainfalls. To study the effect of water level variations alone, we considered the beginning of the irrigation period when the dry canal is gradually filled and we observed a smooth trend of resistivity changes. The effect of rainfall on the data was studied during different periods of the year and at different depths of the levee so that the resistivity variations could be evaluated under different conditions. To convert the inverted resistivity sections into water content maps, an empirical and site-dependent relationship between resistivity and water content was obtained using core samples. Water content data can then be used for the implementation of stability analysis using custom modeling. This study introduces an efficient technique to monitor earthen levees and to control the evolution of seepage and water saturation in pseudo-real time. Such a technique can be exploited by Public Administrations to reduce hydrogeological risks significantly
    • …
    corecore