8,524 research outputs found

    On the Waring--Goldbach problem for eighth and higher powers

    Get PDF
    Recent progress on Vinogradov's mean value theorem has resulted in improved estimates for exponential sums of Weyl type. We apply these new estimates to obtain sharper bounds for the function H(k)H(k) in the Waring--Goldbach problem. We obtain new results for all exponents k8k\ge 8, and in particular establish that H(k)(4k2)logk+k7H(k)\le (4k-2)\log k+k-7 when kk is large, giving the first improvement on the classical result of Hua from the 1940s

    Conduction mechanism and magnetotransport in multi-walled carbon nanotubes

    Full text link
    We report on a numerical study of quantum diffusion over micron lengths in defect-free multi-walled nanotubes. The intershell coupling allows the electron spreading over several shells, and when their periodicities along the nanotube axis are incommensurate, which is likely in real materials, the electronic propagation is shown to be non ballistic. This results in magnetotransport properties which are exceptional for a disorder free system, and provides a new scenario to understand the experiments (A. Bachtold et al. Nature 397, 673 (1999)).Comment: 4 page

    Relaxation Scenarios in a Mixture of Large and Small Spheres: Dependence on the Size Disparity

    Get PDF
    We present a computational investigation on the slow dynamics of a mixture of large and small soft spheres. By varying the size disparity at a moderate fixed composition different relaxation scenarios are observed for the small particles. For small disparity density-density correlators exhibit moderate stretching. Only small quantitative differences are observed between dynamic features for large and small particles. On the contrary, large disparity induces a clear time scale separation between the large and the small particles. Density-density correlators for the small particles become extremely stretched, and display logarithmic relaxation by properly tuning the temperature or the wavevector. Self-correlators decay much faster than density-density correlators. For very large size disparity, a complete separation between self- and collective dynamics is observed for the small particles. Self-correlators decay to zero at temperatures where density-density correlations are frozen. The dynamic picture obtained by varying the size disparity resembles features associated to Mode Coupling transition lines of the types B and A at, respectively, small and very large size disparity. Both lines might merge, at some intermediate disparity, at a higher-order point, to which logarithmic relaxation would be associated. This picture resembles predictions of a recent Mode Coupling Theory for fluids confined in matrixes with interconnected voids [V. Krakoviack, Phys. Rev. Lett. {\bf 94}, 065703 (2005)].Comment: Journal of Chemical Physics 125, 164507 (2006
    corecore