18 research outputs found

    Occurrence of Toxic Cyanobacterial Blooms in Rio de la Plata Estuary, Argentina: Field Study and Data Analysis

    Get PDF
    Water samples were collected during 3 years (2004–2007) at three sampling sites in the Rio de la Plata estuary. Thirteen biological, physical, and chemical parameters were determined on the water samples. The presence of microcystin-LR in the reservoir samples, and also in domestic water samples, was confirmed and quantified. Microcystin-LR concentration ranged between 0.02 and 8.6 Όg.L−1. Principal components analysis was used to identify the factors promoting cyanobacteria growth. The proliferation of cyanobacteria was accompanied by the presence of high total and fecal coliforms bacteria (>1500 MNP/100 mL), temperature ≄25°C, and total phosphorus content ≄1.24 mg·L−1. The observed fluctuating patterns of Microcystis aeruginosa, total coliforms, and Microcystin-LR were also described by probabilistic models based on the log-normal and extreme value distributions. The sampling sites were compared in terms of the distribution parameters and the probability of observing high concentrations for Microcystis aeruginosa, total coliforms, and microcystin-LR concentration

    Occurrence of toxigenic microalgal species and phycotoxins accumulation in mesozooplankton in Northern Patagonian gulfs, Argentina

    Get PDF
    In the Northern Patagonian gulfs of Argentina (Golfo Nuevo and Golfo San JosĂ©), blooms of toxigenic microalgae and the detection of their associated phycotoxins are recurrent phenomena. The present study evaluated the transfer of phycotoxins from toxigenic microalgae to mesozooplankton in Golfo Nuevo and Golfo San JosĂ© throughout an annual cycle (December 2014–2015 and January 2015–2016, respectively). In addition, solid‐phase adsorption toxin tracking (SPATT) samplers were deployed for the first time in these gulfs, to estimate the occurrence of phycotoxins in the seawater between the phytoplankton samplings. Domoic acid was present throughout the annual cycle in SPATT samplers, whereas no paralytic shellfish poisoning toxins were detected. Ten toxigenic species were identified: Alexandrium catenella, Dinophysis acuminata, Dinophysis acuta, Dinophysis tripos, Dinophysis caudata, Prorocentrum lima, Pseudo‐nitzschia australis, Pseudo‐nitzschia calliantha, Pseudo‐nitzschia fraudulenta, and Pseudo‐nitzschia pungens. Lipophilic and hydrophilic toxins were detected in phytoplankton and mesozooplankton from both gulfs. Pseudo‐nitzschia spp. were the toxigenic species most frequent in these gulfs. Consequently, domoic acid was the phycotoxin most abundantly detected and transferred to upper trophic levels. Spirolides were detected in phytoplankton and mesozooplankton for the first time in the study area. Likewise, dinophysistoxins were found in mesozooplankton from both gulfs, and this is the first report of the presence of these phycotoxins in zooplankton from the Argentine Sea. The dominance of calanoid copepods indicates that they were the primary vector of phycotoxins in the pelagic trophic web.Fil: D'Agostino, Valeria C.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Krock, Bernd. Alfred-Wegener-Institut, Helmholtz-Zentrum fĂŒr Polar- und Meeresforschung; AlemaniaFil: Degrati, Mariana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Centro para el Estudio de Sistemas Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Sastre, Viviana. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Santinelli, Norma Herminia. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Krohn, Torben. Alfred-Wegener-Institut, Helmholtz-Zentrum fĂŒr Polar- und Meeresforschung; AlemaniaFil: Hoffmeyer, MĂłnica S.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentina. Universidad TecnolĂłgica Nacional. Facultad Regional BahĂ­a Blanca; Argentin

    Hepatopathy following consumption of a commercially available blue-green algae dietary supplement in a dog

    Get PDF
    BACKGROUND: Dietary supplement use in both human and animals to augment overall health continues to increase and represents a potential health risk due to the lack of safety regulations imposed on the manufacturers. Because there are no requirements for demonstrating safety and efficacy prior to marketing, dietary supplements may contain potentially toxic contaminants such as hepatotoxic microcystins produced by several species of blue-green algae. CASE PRESENTATION: An 11-year-old female spayed 8.95 kg Pug dog was initially presented for poor appetite, lethargy polyuria, polydipsia, and an inability to get comfortable. Markedly increased liver enzyme activities were detected with no corresponding abnormalities evident on abdominal ultrasound. A few days later the liver enzyme activities were persistently increased and the dog was coagulopathic indicating substantial liver dysfunction. The dog was hospitalized for further care consisting of oral S-adenosylmethionine, silybin, vitamin K, and ursodeoxycholic acid, as well as intravenous ampicillin sodium/sulbactam sodium, dolasetron, N-acetylcysteine, metoclopramide, and intravenous fluids. Improvement of the hepatopathy and the dog’s clinical status was noted over the next three days. Assessment of the dog’s diet revealed the use of a commercially available blue-green algae dietary supplement for three-and-a-half weeks prior to hospitalization. The supplement was submitted for toxicology testing and revealed the presence of hepatotoxic microcystins (MCs), MC-LR and MC-LA. Use of the supplement was discontinued and follow-up evaluation over the next few weeks revealed a complete resolution of the hepatopathy. CONCLUSIONS: To the authors’ knowledge, this is the first case report of microcystin intoxication in a dog after using a commercially available blue-green algae dietary supplement. Veterinarians should recognize the potential harm that these supplements may cause and know that with intervention, recovery is possible. In addition, more prudent oversight of dietary supplement use is recommended for our companion animals to prevent adverse events/intoxications

    Relationship Between Ocular Surface Alterations and Concentrations of Aerial Particulate Matter

    Full text link
    Purpose: To evaluate ocular surface alterations in two populations at different exposure levels to particulate matter (PM) in their living and work environments. Methods: A cross-sectional study was conducted, including 78 volunteers from Argentina who lived and worked under different pollution levels in an urban (U; n = 44) or industrial zone (I; n = 34). Mean exposure level to PM was evaluated. Responses to the Ocular Symptom Disease Index and McMonnies questionnaire were obtained from all subjects. Subsequently, an assessment through the Schirmer I test (ST), slit lamp microscopy, vital staining, and tear breakup time was conducted. Statistical analyses with Chi-square and Bartlett's tests, as well as Student's t-tests and principal component analysis (PCA), were performed. Results: Particles of size < 2.5 ÎŒm (PM2.5) level was significantly higher in the I group than the U group (P = 0.04). Ocular surface parameters including bulbar redness, eyelid redness, and the degree of vital staining with fluorescein (SF) and lissamine green (SLG) exhibited difference between the groups. With regards to the tear film, statistically significant differences in the ST value and meibomian gland dysfunction between the groups were detected (P = 0.003 and P = 0.02, respectively). Conjunctival SF and SLG, and ST values were identified as factors which could distinguish groups exposed to different PM levels. Conclusion: Subjects exposed to higher levels of PM in the outdoor air presented greater ocular surface alterations. Thus, ST, SF, and SLG values could be used as convenient indicators of adverse health effects due to exposure to air pollution

    Toxin profile of Alexandrium catenella from the Chilean coast as determined by liquid chromatography with fluorescence detection and liquid chromatography coupled with tandem mass spectrometry

    Get PDF
    The profile of tetrahydropurine neurotoxins associated with paralytic shellfish poisoning (PSP) was determined from a Chilean strain of the marine dinoflagellate Alexandrium catenella. The toxin composition was compared with that of toxic shellfish, presumably contaminated by natural blooms of A. catenella from the same region in southern Chile. Ion pair-liquid chromatography with post-column derivatization and fluorescence detection (LC-FD) was employed for relative quantitative analysis of the toxin components, whereas unambiguous identification of the toxins was confirmed by tandem mass spectrometry (LC–MS/MS). In the dinoflagellate strain from Chile, the N-sulfocarbamoyl derivatives (C1/C2, B1) and the carbamoyl gonyautoxins GTX1/GTX4 comprise >90% of the total PSP toxin content on a molar basis. This toxin composition is consistent with that determined for A. catenella populations from the Pacific coast in the northern hemisphere. The characteristic toxin profile is also reflected in the shellfish, but with evidence of epimerization and metabolic transformations of C1 and C2 to GTX2 and GTX3, respectively. This work represents the first unequivocal identification and confirmation of such PSP toxin components from the Chilean coast
    corecore