7,179 research outputs found

    Black hole superradiance and polarization-dependent bending of light

    Full text link
    An inhomogeneous pseudo-scalar field configuration behaves like an optically active medium. Consequently, if a light ray passes through an axion cloud surrounding a Kerr black hole, it may experience a polarization-dependent bending. We explore the size and relevance of such effect considering both the QCD axion and a generic axion-like particle.Comment: Bulk of 29 pages + 11 figures. v2: minor changes, version accepted for publication in JCA

    Asymptotic Inverse Problem for Almost-Periodically Perturbed Quantum Harmonic Oscillator

    Full text link
    Consider quantum harmonic oscillator, perturbed by an even almost-periodic complex-valued potential with bounded derivative and primitive. Suppose that we know the first correction to the spectral asymptotics {Δμn}n=0\{\Delta\mu_n\}_{n=0}^\infty (Δμn=μnμn0+o(n1/4)\Delta\mu_n=\mu_n-\mu_n^0+o(n^{-1/4}), where μn0\mu_n^0 and μn\mu_n is the spectrum of the unperturbed and the perturbed operators, respectively). We obtain the formula that recovers the frequencies and the Fourier coefficients of the perturbation.Comment: 6 page

    Covariant un-reduction for curve matching

    Full text link
    The process of un-reduction, a sort of reversal of reduction by the Lie group symmetries of a variational problem, is explored in the setting of field theories. This process is applied to the problem of curve matching in the plane, when the curves depend on more than one independent variable. This situation occurs in a variety of instances such as matching of surfaces or comparison of evolution between species. A discussion of the appropriate Lagrangian involved in the variational principle is given, as well as some initial numerical investigations.Comment: Conference paper for MFCA201

    Mode-balancing far field control of light localization in nanoantennas

    Full text link
    Light localization is controlled at a scale of lambda/10 in the harmonic regime from the far field domain in a plasmonic nanoantenna. The nanoantenna under study consists of 3 aligned spheres 50 nm in diameter separated by a distance of 5 nm. By simply tuning the orientation of an incident plane wave, symmetric and antisymmetric mode-balancing induces a strong enhancement of the near field intensity in one cavity while nullifying the light intensity in the other cavity. Furthermore, it is demonstrated that the dipolar moment of a plasmonic particle can be fully extinguished when strongly coupled with a dimer of identical nanoparticles. Consequently, optical transparency can be achieved in an ultra-compact symmetric metallic structure

    Ruelle-Pollicott Resonances of Stochastic Systems in Reduced State Space. Part II: Stochastic Hopf Bifurcation

    Get PDF
    The spectrum of the generator (Kolmogorov operator) of a diffusion process, referred to as the Ruelle-Pollicott (RP) spectrum, provides a detailed characterization of correlation functions and power spectra of stochastic systems via decomposition formulas in terms of RP resonances. Stochastic analysis techniques relying on the theory of Markov semigroups for the study of the RP spectrum and a rigorous reduction method is presented in Part I. This framework is here applied to study a stochastic Hopf bifurcation in view of characterizing the statistical properties of nonlinear oscillators perturbed by noise, depending on their stability. In light of the H\"ormander theorem, it is first shown that the geometry of the unperturbed limit cycle, in particular its isochrons, is essential to understand the effect of noise and the phenomenon of phase diffusion. In addition, it is shown that the spectrum has a spectral gap, even at the bifurcation point, and that correlations decay exponentially fast. Explicit small-noise expansions of the RP eigenvalues and eigenfunctions are then obtained, away from the bifurcation point, based on the knowledge of the linearized deterministic dynamics and the characteristics of the noise. These formulas allow one to understand how the interaction of the noise with the deterministic dynamics affect the decay of correlations. Numerical results complement the study of the RP spectrum at the bifurcation, revealing useful scaling laws. The analysis of the Markov semigroup for stochastic bifurcations is thus promising in providing a complementary approach to the more geometric random dynamical system approach. This approach is not limited to low-dimensional systems and the reduction method presented in part I is applied to a stochastic model relevant to climate dynamics in part III

    Modelling incomplete fusion dynamics of weakly-bound nuclei at near-barrier energies

    Full text link
    The classical dynamical model for reactions induced by weakly-bound nuclei at near-barrier energies is developed further. It allows a quantitative study of the role and importance of incomplete fusion dynamics in asymptotic observables, such as the population of high-spin states in reaction products as well as the angular distribution of direct alpha-production. Model calculations indicate that incomplete fusion is an effective mechanism for populating high-spin states, and its contribution to the direct alpha production yield diminishes with decreasing energy towards the Coulomb barrier. It also becomes notably separated in angles from the contribution of no-capture breakup events. This should facilitate the experimental disentanglement of these competing reaction processes.Comment: 12 pages, 7 figures (for better resolution figures please contact the author), Accepted in Journal of Physics
    corecore