2,785 research outputs found
Recommended from our members
Avoiding Future Famines: Strengthening the Ecological Foundation of Food Security through Sustainable Food Systems. A UNEP Synthesis Report
Stacking Entropy of Hard Sphere Crystals
Classical hard spheres crystallize at equilibrium at high enough density.
Crystals made up of stackings of 2-dimensional hexagonal close-packed layers
(e.g. fcc, hcp, etc.) differ in entropy by only about per sphere
(all configurations are degenerate in energy). To readily resolve and study
these small entropy differences, we have implemented two different
multicanonical Monte Carlo algorithms that allow direct equilibration between
crystals with different stacking sequences. Recent work had demonstrated that
the fcc stacking has higher entropy than the hcp stacking. We have studied
other stackings to demonstrate that the fcc stacking does indeed have the
highest entropy of ALL possible stackings. The entropic interactions we could
detect involve three, four and (although with less statistical certainty) five
consecutive layers of spheres. These interlayer entropic interactions fall off
in strength with increasing distance, as expected; this fall-off appears to be
much slower near the melting density than at the maximum (close-packing)
density. At maximum density the entropy difference between fcc and hcp
stackings is per sphere, which is roughly 30% higher
than the same quantity measured near the melting transition.Comment: 15 page
Coulomb Excitation of Multi-Phonon Levels of the Giant Dipole Resonance
A closed expression is obtained for the cross-section for Coulomb excitation
of levels of the giant dipole resonance of given angular momentum and phonon
number. Applications are made to the Goldhaber-Teller and Steinwedel-Jensen
descriptions of the resonance, at non-relativistic and relativistic bombarding
energies.Comment: 16 pages, 5 figure
The Effect of Immune Serum on the Infectivity of Sonically Damaged Plasmodium berghei Infected Erythrocytes
Author Institution: Department of Microbiology, The Ohio State UniversityThe reduction in the infectivity of those Plasmodium berghei containing erythrocytes which remained unlysed following exposure to sonic energy and treatment with immune serum was shown to be far greater than that caused by the sum of the separate actions of immune serum and sonic energy applied separately. This indicates that, after exposure to sonic energy, plasmodia in surviving, parasitized erythrocytes are more susceptible to neutralization by immune serum than are plasmodia in unsonicated, parasitized erythrocytes. The membranes of parasitized erythrocytes that survive sonication thus appear to be permeable so that intracellular parasites are accessible to antibodies in immune serum
The Semiclassical Coulomb Interaction
The semiclassical Coulomb excitation interaction is at times expressed in the
Lorentz gauge in terms of the electromagnetic fields and a contribution from
the scalar electric potential. We point out that the potential term can make
spurious contributions to excitation cross sections, especially when the the
decay of excited states is taken into account. We show that, through an
appropriate gauge transformation, the excitation interaction can be expressed
in terms of the electromagnetic fields alone.Comment: 12 pages. Phys. Rev. C, Rapid Communication, in pres
Quantal Brownian Motion - Dephasing and Dissipation
We analyze quantal Brownian motion in dimensions using the unified model
for diffusion localization and dissipation, and Feynman-Vernon formalism. At
high temperatures the propagator possess a Markovian property and we can write
down an equivalent Master equation. Unlike the case of the
Zwanzig-Caldeira-Leggett model, genuine quantum mechanical effects manifest
themselves due to the disordered nature of the environment. Using Wigner
picture of the dynamics we distinguish between two different mechanisms for
destruction of coherence. The analysis of dephasing is extended to the low
temperature regime by using a semiclassical strategy. Various results are
derived for ballistic, chaotic, diffusive, both ergodic and non-ergodic motion.
We also analyze loss of coherence at the limit of zero temperature and clarify
the limitations of the semiclassical approach. The condition for having
coherent effect due to scattering by low-frequency fluctuations is also pointed
out. It is interesting that the dephasing rate can be either larger or smaller
than the dissipation rate, depending on the physical circumstances.Comment: LaTex, 23 pages, 4 figures, published vesio
- …