11,204 research outputs found

    Critical Behaviour of Mixed Heisenberg Chains

    Full text link
    The critical behaviour of anisotropic Heisenberg models with two kinds of antiferromagnetically exchange-coupled centers are studied numerically by using finite-size calculations and conformal invariance. These models exhibit the interesting property of ferrimagnetism instead of antiferromagnetism. Most of our results are centered in the mixed Heisenberg chain where we have at even (odd) sites a spin-S (S') SU(2) operator interacting with a XXZ like interaction (anisotropy Δ\Delta). Our results indicate universal properties for all these chains. The whole phase, 1>Δ>11>\Delta>-1, where the models change from ferromagnetic (Δ=1)( \Delta=1 ) to ferrimagnetic (Δ=1)(\Delta=-1) behaviour is critical. Along this phase the critical fluctuations are ruled by a c=1 conformal field theory of Gaussian type. The conformal dimensions and critical exponents, along this phase, are calculated by studying these models with several boundary conditions.Comment: 21 pages, standard LaTex, to appear in J.Phys.A:Math.Ge

    Exactly solvable interacting vertex models

    Full text link
    We introduce and solvev a special family of integrable interacting vertex models that generalizes the well known six-vertex model. In addition to the usual nearest-neighbor interactions among the vertices, there exist extra hard-core interactions among pair of vertices at larger distances.The associated row-to-row transfer matrices are diagonalized by using the recently introduced matrix product {\it ansatz}. Similarly as the relation of the six-vertex model with the XXZ quantum chain, the row-to-row transfer matrices of these new models are also the generating functions of an infinite set of commuting conserved charges. Among these charges we identify the integrable generalization of the XXZ chain that contains hard-core exclusion interactions among the spins. These quantum chains already appeared in the literature. The present paper explains their integrability.Comment: 20 pages, 3 figure

    Exact Solution of the Asymmetric Exclusion Model with Particles of Arbitrary Size

    Full text link
    A generalization of the simple exclusion asymmetric model is introduced. In this model an arbitrary mixture of molecules with distinct sizes s=0,1,2,...s = 0,1,2,..., in units of lattice space, diffuses asymmetrically on the lattice. A related surface growth model is also presented. Variations of the distribution of molecules's sizes may change the excluded volume almost continuously. We solve the model exactly through the Bethe ansatz and the dynamical critical exponent zz is calculated from the finite-size corrections of the mass gap of the related quantum chain. Our results show that for an arbitrary distribution of molecules the dynamical critical behavior is on the Kardar-Parizi-Zhang (KPZ) universality.Comment: 28 pages, 2 figures. To appear in Phys. Rev. E (1999

    New Integrable Models from Fusion

    Full text link
    Integrable multistate or multiflavor/color models were recently introduced. They are generalizations of models corresponding to the defining representations of the U_q(sl(m)) quantum algebras. Here I show that a similar generalization is possible for all higher dimensional representations. The R-matrices and the Hamiltonians of these models are constructed by fusion. The sl(2) case is treated in some detail and the spin-0 and spin-1 matrices are obtained in explicit forms. This provides in particular a generalization of the Fateev-Zamolodchikov Hamiltonian.Comment: 11 pages, Latex. v2: statement concerning symmetries qualified, 3 minor misprints corrected. J. Phys. A (1999) in pres

    Spin chains and combinatorics: twisted boundary conditions

    Full text link
    The finite XXZ Heisenberg spin chain with twisted boundary conditions was considered. For the case of even number of sites NN, anisotropy parameter -1/2 and twisting angle 2π/32 \pi /3 the Hamiltonian of the system possesses an eigenvalue 3N/2-3N/2. The explicit form of the corresponding eigenvector was found for N12N \le 12. Conjecturing that this vector is the ground state of the system we made and verified several conjectures related to the norm of the ground state vector, its component with maximal absolute value and some correlation functions, which have combinatorial nature. In particular, the squared norm of the ground state vector is probably coincides with the number of half-turn symmetric alternating sign N×NN \times N matrices.Comment: LaTeX file, 7 page

    Finite Chains with Quantum Affine Symmetries

    Full text link
    We consider an extension of the (t-U) Hubbard model taking into account new interactions between the numbers of up and down electrons. We confine ourselves to a one-dimensional open chain with L sites (4^L states) and derive the effective Hamiltonian in the strong repulsion (large U) regime. This Hamiltonian acts on 3^L states. We show that the spectrum of the latter Hamiltonian (not the degeneracies) coincides with the spectrum of the anisotropic Heisenberg chain (XXZ model) in the presence of a Z field (2^L states). The wave functions of the 3^L-state system are obtained explicitly from those of the 2^L-state system, and the degeneracies can be understood in terms of irreducible representations of U_q(\hat{sl(2)}).Comment: 31pp, Latex, CERN-TH.6935/93. To app. in Int. Jour. Mod. Phys. A. (The title of the paper is changed. This is the ONLY change. Previous title was: Hubbard-Like Models in the Infinite Repulsion Limit and Finite-Dimensional Representations of the Affine Algebra U_q(\hat{sl(2)}).

    Conformal invariance studies of the Baxter-Wu model and a related site-colouring problem

    Full text link
    The partition function of the Baxter-Wu model is exactly related to the generating function of a site-colouring problem on a hexagonal lattice. We extend the original Bethe ansatz solution of these models in order to obtain the eigenspectra of their transfer matrices in finite geometries and general toroidal boundary conditions. The operator content of these models are studied by solving numerically the Bethe-ansatz equations and by exploring conformal invariance. Since the eigenspectra are calculated for large lattices, the corrections to finite-size scaling are also calculated.Comment: 12 pages, latex, to appear in J. Phys. A: Gen. Mat

    Spectra of non-hermitian quantum spin chains describing boundary induced phase transitions

    Full text link
    The spectrum of the non-hermitian asymmetric XXZ-chain with additional non-diagonal boundary terms is studied. The lowest lying eigenvalues are determined numerically. For the ferromagnetic and completely asymmetric chain that corresponds to a reaction-diffusion model with input and outflow of particles the smallest energy gap which corresponds directly to the inverse of the temporal correlation length shows the same properties as the spatial correlation length of the stationary state. For the antiferromagnetic chain with both boundary terms, we find a conformal invariant spectrum where the partition function corresponds to the one of a Coulomb gas with only magnetic charges shifted by a purely imaginary and a lattice-length dependent constant. Similar results are obtained by studying a toy model that can be diagonalized analytically in terms of free fermions.Comment: LaTeX, 26 pages, 1 figure, uses ioplppt.st

    The spin-1/2 XXZ Heisenberg chain, the quantum algebra U_q[sl(2)], and duality transformations for minimal models

    Get PDF
    The finite-size scaling spectra of the spin-1/2 XXZ Heisenberg chain with toroidal boundary conditions and an even number of sites provide a projection mechanism yielding the spectra of models with a central charge c<1 including the unitary and non-unitary minimal series. Taking into account the half-integer angular momentum sectors - which correspond to chains with an odd number of sites - in many cases leads to new spinor operators appearing in the projected systems. These new sectors in the XXZ chain correspond to a new type of frustration lines in the projected minimal models. The corresponding new boundary conditions in the Hamiltonian limit are investigated for the Ising model and the 3-state Potts model and are shown to be related to duality transformations which are an additional symmetry at their self-dual critical point. By different ways of projecting systems we find models with the same central charge sharing the same operator content and modular invariant partition function which however differ in the distribution of operators into sectors and hence in the physical meaning of the operators involved. Related to the projection mechanism in the continuum there are remarkable symmetry properties of the finite XXZ chain. The observed degeneracies in the energy and momentum spectra are shown to be the consequence of intertwining relations involving U_q[sl(2)] quantum algebra transformations.Comment: This is a preprint version (37 pages, LaTeX) of an article published back in 1993. It has been made available here because there has been recent interest in conformal twisted boundary conditions. The "duality-twisted" boundary conditions discussed in this paper are particular examples of such boundary conditions for quantum spin chains, so there might be some renewed interest in these result

    Different facets of the raise and peel model

    Full text link
    The raise and peel model is a one-dimensional stochastic model of a fluctuating interface with nonlocal interactions. This is an interesting physical model. It's phase diagram has a massive phase and a gapless phase with varying critical exponents. At the phase transition point, the model exhibits conformal invariance which is a space-time symmetry. Also at this point the model has several other facets which are the connections to associative algebras, two-dimensional fully packed loop models and combinatorics.Comment: 29 pages 17 figure
    corecore