37 research outputs found

    Granulocyte colony-stimulating factor treatment ameliorates lupus nephritis through the expansion of regulatory T cells

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Abstract Background Granulocyte colony-stimulating factor (G-CSF) can induce regulatory T cells (Tregs) as well as myeloid-derived suppressor cells (MDSCs). Despite the immune modulatory effects of G-CSF, results of G-CSF treatment in systemic lupus erythematosus are still controversial. We therefore investigated whether G-CSF can ameliorate lupus nephritis and studied the underlying mechanisms. Methods NZB/W F1 female mice were treated with G-CSF or phosphate-buffered saline for 5 consecutive days every week from 24 weeks of age, and were analyzed at 36 weeks of age. Results G-CSF treatment decreased proteinuria and serum anti-dsDNA, increased serum complement component 3 (C3), and attenuated renal tissue injury including deposition of IgG and C3. G-CSF treatment also decreased serum levels of BUN and creatinine, and ultimately decreased mortality of NZB/W F1 mice. G-CSF treatment induced expansion of CD4+CD25+Foxp3+ Tregs, with decreased renal infiltration of T cells, B cells, inflammatory granulocytes and monocytes in both kidneys and spleen. G-CSF treatment also decreased expression levels of MCP-1, IL-6, IL-2, and IL-10 in renal tissues as well as serum levels of MCP-1, IL-6, TNF-α, IL-10, and IL-17. When Tregs were depleted by PC61 treatment, G-CSF-mediated protective effects on lupus nephritis were abrogated. Conclusions G-CSF treatment ameliorated lupus nephritis through the preferential expansion of CD4+CD25+Foxp3+ Tregs. Therefore, G-CSF has a therapeutic potential for lupus nephritis

    Association of Marek's Disease induced immunosuppression with activation of a novel regulatory T cells in chickens.

    Get PDF
    Marek’s Disease Virus (MDV) is an alphaherpesvirus that infects chickens, transforms CD4+ T cells and causes deadly lymphomas. In addition, MDV induces immunosuppression early during infection by inducing cell death of the infected lymphocytes, and potentially due to activation of regulatory T (Treg)-cells. Furthermore, immunosuppression also occurs during the transformation phase of the disease; however, it is still unknown how the disease can suppress immune response prior or after lymphoma formation. Here, we demonstrated that chicken TGF-beta+ Treg cells are found in different lymphoid tissues, with the highest levels found in the gut-associated lymphoid tissue (cecal tonsil: CT), fostering an immune-privileged microenvironment exerted by TGF-beta. Surprisingly, significantly higher frequencies of TGF-beta+ Treg cells are found in the spleens of MDV-susceptible chicken lines compared to the resistant line, suggesting an association between TGF-beta+ Treg cells and host susceptibility to lymphoma formation. Experimental infection with a virulent MDV elevated the levels of TGF-beta+ Treg cells in the lungs as early as 4 days post infection, and during the transformation phase of the disease in the spleens. In contrast to TGF-beta+ Treg cells, the levels of CD4+CD25+ T cells remained unchanged during the infection and transformation phase of the disease. Furthermore, our results demonstrate that the induction of TGF-beta+ Treg cells is associated with pathogenesis of the disease, as the vaccine strain of MDV did not induce TGF-beta+ Treg cells. Similar to human haematopoietic malignant cells, MDV-induced lymphoma cells expressed high levels of TGF-beta but very low levels of TGF-beta receptor I and II genes. The results confirm that COX-2/ PGE2 pathway is involved in immunosuppression induced by MDV-lymphoma cells. Taken together, our results revealed a novel TGF-beta+ Treg subset in chickens that is activated during MDV infection and tumour formation.Biotechnology and Biological Sciences Research Counci

    In vivo induction of myeloid suppressor cells and CD4+Foxp3+ T regulatory cells prolongs skin allograft survival in mice.

    No full text
    Natural CD4+Foxp3+ T regulatory (Treg) cells can promote transplantation acceptance across MHC barriers, while Myeloid-derived suppressor cells (MDSCs) inhibit effector T cell responses in tumor-bearing mice. One outstanding issue is whether combining the potent suppressive function of MDSCs with that of Treg cells might synergistically favor graft tolerance. In the present study, we evaluated the therapeutic potential of MDSCs and natural Treg cells in promoting allograft tolerance in mice by utilizing immunomodulatory agents to expand these cells in vivo. Upon administration of recombinant human G-CSF (Granulocyte-Colony Stimulating Factor; Neupogen), or interleukin-2 complex (IL-2C), Gr-1+CD11b+ MDSCs or CD4+Foxp3+ Treg cells were respectively induced at a high frequency in the peripheral lymphoid compartments of treated mice. Interestingly, induced MDSCs exhibited a more potent suppressive function in vitro when compared to MDSCs from na\uefve mice. Furthermore, in vivo co-administration of Neupogen and IL-2C induced MDSCs at percentages that were higher than those seen when either agent was administered alone, suggesting an additive effect of the two drugs. Although treatment with either IL-2C or Neupogen led to a significant delay of major histocompatibility complex (MHC) class II disparate allogeneic donor skin rejection, the combinatorial treatment was superior to either alone. Importantly, histological assessment of surviving grafts revealed intact morphology and minimal infiltrates at 60 days post transplant. Collectively, our findings demonstrate that concurrent induction of MDSCs and Tregs is efficacious in downmodulating alloreactive T cell responses in a synergistic manner and highlight the therapeutic potential of these naturally occurring suppressive leukocytes to promote transplantation tolerance
    corecore