5,052 research outputs found

    Ecological Observations on Predatory Coccinellidae (Coleoptera) in Southwestern Michigan

    Get PDF
    Ecological observations on habitat utilization by thirteen species of predatory Coccinellidae were made at a southern Michigan site during 1989 and 1990. Most of species were common during both years and used both agricul- tural and uncultivated habitats. Coccinella septempunctata and Coleomegilla maculata, were the most abundant in agricultural crops (alfalfa, maize, soy- bean and triticale), whereas Adalia bipunctata and Cycloneda munda, were the most abundant in deciduous and bushy habitats

    On the Nature of the Strong Emission-Line Galaxies in Cluster Cl 0024+1654: Are Some the Progenitors of Low Mass Spheroidals?

    Get PDF
    We present new size, line ratio, and velocity width measurements for six strong emission-line galaxies in the galaxy cluster, Cl 0024+1654, at redshift z~0.4. The velocity widths from Keck spectra are all narrow (30<sigma<120 km/s), with three profiles showing double peaks. Four galaxies have low masses (M<10^{10} Mo). Whereas three galaxies were previously reported to be possible AGNs, none exhibit AGN-like emission line ratios or velocity widths. Two or three appear as very blue spirals with the remainder more akin to luminous H-II galaxies undergoing a strong burst of star formation. We propose that after the burst subsides, these galaxies will transform into quiescent dwarfs, and are thus progenitors of some cluster spheroidals (We adopt the nomenclature suggested by Kormendy & Bender (1994), i.e., low-density, dwarf ellipsoidal galaxies like NGC 205 are called `spheroidals' instead of `dwarf ellipticals') seen today.Comment: 14 pages + 2 figures + 1 table, LaTeX, Acc. for publ. in ApJL also available at http://www.ucolick.org/~deep/papers/papers.htm

    Pressure-induced phase transitions and high-pressure tetragonal phase of Fe1.08Te

    Full text link
    We report the effects of hydrostatic pressure on the temperature-induced phase transitions in Fe1.08Te in the pressure range 0-3 GPa using synchrotron powder x-ray diffraction (XRD). The results reveal a plethora of phase transitions. At ambient pressure, Fe1.08Te undergoes simultaneous first-order structural symmetry-breaking and magnetic phase transitions, namely from the paramagnetic tetragonal (P4/nmm) to the antiferromagnetic monoclinic (P2_1/m) phase. We show that, at a pressure of 1.33 GPa, the low temperature structure adopts an orthorhombic symmetry. More importantly, for pressures of 2.29 GPa and higher, a symmetry-conserving tetragonal-tetragonal phase transition has been identified from a change in the c/a ratio of the lattice parameters. The succession of different pressure and temperature-induced structural and magnetic phases indicates the presence of strong magneto-elastic coupling effects in this material.Comment: 11 page

    Role of cross-shell excitations in the reaction 54Fe(d_pol,p)55Fe

    Full text link
    The reaction 54Fe(d_pol,p)55Fe was studied at the Munich Q3D spectrograph with a 14 MeV polarized deuteron beam. Excitation energies, angular distributions and analyzing powers were measured for 39 states up to 4.5 MeV excitation energy. Spin and parity assignments were made and spectroscopic factors deduced by comparison to DWBA calculations. The results were compared to predictions by large scale shell model calculations in the full pf-shell and it was found that reasonable agreement for energies and spectroscopic factors below 2.5 MeV could only be obtained if up to 6 particles were allowed to be excited from the f_7/2 orbital into p_3/2, f_5/2, and p_1/2 orbitals across the N=28 gap. For levels above 2.5 MeV the experimental strength distribution was found to be significantly more fragmented than predicted by the shell model calculations.Comment: 9 pages, 12 figures, 3 tables, submitted to European Physical Journal

    Magnetization Reversal in Elongated Fe Nanoparticles

    Get PDF
    Magnetization reversal of individual, isolated high-aspect-ratio Fe nanoparticles with diameters comparable to the magnetic exchange length is studied by high-sensitivity submicron Hall magnetometry. For a Fe nanoparticle with diameter of 5 nm, the magnetization reversal is found to be an incoherent process with localized nucleation assisted by thermal activation, even though the particle has a single-domain static state. For a larger elongated Fe nanoparticle with a diameter greater than 10 nm, the inhomogeneous magnetic structure of the particle plays important role in the reversal process.Comment: 6 pages, 6 figures, to appear in Phys. Rev. B (2005

    Domain wall dynamics in a single CrO2_2 grain

    Full text link
    Recently we have reported on the magnetization dynamics of a single CrO2_2 grain studied by micro Hall magnetometry (P. Das \textit{et al.}, Appl. Phys. Lett. \textbf{97} 042507, 2010). For the external magnetic field applied along the grain's easy magnetization direction, the magnetization reversal takes place through a series of Barkhausen jumps. Supported by micromagnetic simulations, the ground state of the grain was found to correspond to a flux closure configuration with a single cross-tie domain wall. Here, we report an analysis of the Barkhausen jumps, which were observed in the hysteresis loops for the external field applied along both the easy and hard magnetization directions. We find that the magnetization reversal takes place through only a few configuration paths in the free-energy landscape, pointing to a high purity of the sample. The distinctly different statistics of the Barkhausen jumps for the two field directions is discussed.Comment: JEMS Conference, to appear in J. Phys. Conf. Se

    Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation

    Get PDF
    In this study, we attempt to predict cortical and trabecular bone adaptation in the mouse caudal vertebrae loading model using knowledge of bone's local mechanical environment at the onset of loading. In a previous study, we demonstrated appreciable 25.9 and 11% increases in both trabecular and cortical bone volume density, respectively, when subjecting the fifth caudal vertebrae (C5) of C57BL/6 (B6) mice to an acute loading regime (amplitude of 8N, 3000 cycles, 10 Hz, 3 times a week for 4 weeks). We have also established a validated finite element (FE) model of the C5 vertebra using micro-computed tomography (micro-CT), which characterizes, in 3D, the micro-mechanical strains present in both cortical and trabecular compartments due to the applied loads. To investigate the relationship between load-induced bone adaptation and mechanical strains in-vivo and in-silico data sets were compared. Using data from the previous cross-sectional study, we divided cortical and trabecular compartments into 15 subregions and determined, for each region, a bone formation parameter ΔBV/BS (a cross-sectional measure of the bone volume added to cortical and trabecular surfaces following the described loading regime). Linear regression was then used to correlate mean regional values of ΔBV/BS with mean values of mechanical strains derived from the FE models which were similarly regionalized. The mechanical parameters investigated were strain energy density (SED), the orthogonal strains (e x , e y , e z ) and the three shear strains (e xy , e yz , e zx ). For cortical regions, regression analysis showed SED to correlate extremely well with ΔBV/BS (R 2 =0.82) and e z (R 2=0.89). Furthermore, SED was found to predict expansion of the cortical shell correlating significantly with the regional percentage increases in cortical tissue volume (R 2 = 0.92), cortical marrow volume (R 2 =0.91) and cortical thickness (R 2 = 0.56). For trabecular regions, FE parameters were found not to correlate with load-induced trabecular bone morphology. These results indicate that load-induced cortical morphology can be predicted from population data, whereas the prediction of trabecular morphology requires subject-specific micro- architectur
    corecore