230 research outputs found

    Disposal of NORM Waste in Salt Caverns

    Get PDF
    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice

    Albedo and Reflection Spectra of Extrasolar Giant Planets

    Full text link
    We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, a Mie theory treatment of extinction by condensates, a variety of particle size distributions, and an extension of the Feautrier radiative transfer method which allows for a general treatment of the scattering phase function. We find that due to qualitative similarities in the compositions and spectra of objects within each of five broad effective temperature ranges, it is natural to establish five representative EGP albedo classes: a ``Jovian'' class (Teff150_{\rm eff} \lesssim 150 K; Class I) with tropospheric ammonia clouds, a ``water cloud'' class (Teff250_{\rm eff} \sim 250 K; Class II) primarily affected by condensed H2_2O, a ``clear'' class (Teff350_{\rm eff} \gtrsim 350 K; Class III) which lacks clouds, and two high-temperature classes: Class IV (900 K \lesssim Teff_{\rm{eff}} \lesssim 1500 K) for which alkali metal absorption predominates, and Class V (Teff_{\rm{eff}} \gtrsim 1500 K and/or low surface gravity (\lesssim 103^3 cm s2^{-2})) for which a high silicate layer shields a significant fraction of the incident radiation from alkali metal and molecular absorption. The resonance lines of sodium and potassium are expected to be salient features in the reflection spectra of Class III, IV, and V objects. We derive Bond albedos and effective temperatures for the full set of known EGPs and explore the possible effects of non-equilibrium condensed products of photolysis above or within principal cloud decks. As in Jupiter, such species can lower the UV/blue albedo substantially, even if present in relatively small mixing ratios.Comment: revised LaTeX manuscript accepted to Ap.J.; also available at http://jupiter.as.arizona.edu/~burrows/paper

    Barnegat Bay-Little Egg Harbor Estuary : case study of a highly eutrophic coastal bay system

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17 (2007): S3–S16, doi:10.1890/05-0800.1.The Barnegat Bay-Little Egg Harbor Estuary is classified here as a highly eutrophic estuary based on application of NOAA’s National Estuarine Eutrophication Assessment model. Because it is shallow, poorly flushed, and bordered by highly developed watershed areas, the estuary is particularly susceptible to the effects of nutrient loading. Most of this load (~50%) is from surface water inflow, but substantial fractions also originate from atmospheric deposition (~39%), and direct groundwater discharges (~11%). No point source inputs of nutrients exist in the Barnegat Bay watershed. Since 1980, all treated wastewater from the Ocean County Utilities Authority's regional wastewater treatment system has been discharged 1.6 km offshore in the Atlantic Ocean. Eutrophy causes problems in this system, including excessive micro- and macroalgal growth, harmful algal blooms (HABs), altered benthic invertebrate communities, impacted harvestable fisheries, and loss of essential habitat (i.e., seagrass and shellfish beds). Similar problems are evident in other shallow lagoonal estuaries of the Mid-Atlantic and South Atlantic regions. To effectively address nutrient enrichment problems in the Barnegat Bay-Little Egg Harbor Estuary, it is important to determine the nutrient loading levels that produce observable impacts in the system. It is also vital to continually monitor and assess priority indicators of water quality change and estuarine health. In addition, the application of a new generation of innovative models using web-based tools (e.g., NLOAD) will enable researchers and decision-makers to more successfully manage nutrient loads from the watershed. Finally, the implementation of stormwater retrofit projects should have beneficial effects on the system.Financial support of the Barnegat Bay National Estuary Program and Jacques Cousteau National Estuarine Research Reserve is gratefully acknowledged

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    The Thermal Balance of Venus in Light of the Pioneer Venus Mission

    Get PDF
    Instruments flown on the Pioneer Venus orbiter and probes measured many of the properties of the atmosphere of Venus which control its thermal balance and support its high surface temperature. Estimates based on orbiter measurements place the effective radiating temperature of Venus at 228±5 K, corresponding to an emission of 153±13 W/m², and the bolometric Bond albedo at 0.80±0.02, corresponding to a solar energy absorption of 132±13 W/m². Uncertainties in these preliminary values are too large to interpret the flux difference as a true energy imbalance. A mode of submicron particles is suggested as an important source of thermal opacity near the cloud tops to explain the orbiter and probe thermal flux measurements. Comparison of the measured solar flux profile with thermal fluxes computed from the measured temperature structure and composition shows that the greenhouse mechanism explains essentially all of the 500 K difference between the surface and radiating temperatures of Venus. Precise comparison of the observed and computed value of this difference is hindered by uncertainties in the local variability of H_(2)O and in the thermal opacity of CO_2 and H_(2)O at high temperature and pressure. The directly measured thermal flux profiles at the small probe sites are surprisingly large and variable in the lower atmosphere. Observed zonal and meridional circulation are qualitatively as required to produce the observed uniformity of temperature structure. However, the present lack of quantitative estimates of the horizontal and vertical dynamical heat transports implied by these measurements is a significant gap in the understanding of the thermal balance of the atmosphere of Venus
    corecore