19,745 research outputs found
Analytical model of brittle destruction based on hypothesis of scale similarity
The size distribution of dust particles in nuclear fusion devices is close to
the power function. A function of this kind can be the result of brittle
destruction. From the similarity assumption it follows that the size
distribution obeys the power law with the exponent between -4 and -1. The model
of destruction has much in common with the fractal theory. The power exponent
can be expressed in terms of the fractal dimension. Reasonable assumptions on
the shape of fragments concretize the power exponent, and vice versa possible
destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure
Detailed modeling and analysis of spacecraft plume/ionosphere interactions in low Earth orbit
Detailed direct simulation Monte Carlo/particleâinâcell simulations involving the interaction of spacecraft thruster plumes with the rarefied ambient ionosphere are presented for steady thruster firings in low Earth orbit (LEO). A nominal mass flow rate is used to prescribe the rocket exit conditions of a neutral propellant species for use in the simulations. The charge exchange interactions of the steady plume with the rarefied ionosphere are modeled using a direct simulation Monte Carlo/particleâinâcell methodology, allowing for a detailed assessment of nonequilibrium collisional and plasmaârelated phenomena relevant for these conditions. Results are presented for both ramâ and wakeâflow configurations, in which the thrusters are firing into (ram) or in the direction of (wake) the free stream ionosphere flow in LEO. The influence of the Earth's magnetic field on the development of the ion plume is also examined for three different field strengths: two limiting cases in which B â0 and B â â , and the LEO case in which B =0.5 Gs. The magnetic field is found to have a substantial impact on the resulting neutral and ion plumes, and the gyroscopic motion of the magnetized ions results in a broadening of the ion energy distribution functions. The magnetic field model also incorporates a crossâfield diffusion mechanism which is shown to increase the current density sampled far from the thruster. Key Points Particleâbased model for plume/ionosphere interactions Chargeâexchange reactions modeled using detailed DCS/TCS data B âfield has a strong influence on the development of plumesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106930/1/jgra50833.pd
Spacecraft plume interactions with the magnetosphere plasma environment in geostationary Earth orbit
Particleâbased kinetic simulations of steady and unsteady hydrazine chemical rocket plumes are presented in a study of plume interactions with the ambient magnetosphere in geostationary Earth orbit. The hydrazine chemical rocket plume expands into a nearâvacuum plasma environment, requiring the use of a combined direct simulation Monte Carlo/particleâinâcell methodology for the rarefied plasma conditions. Detailed total and differential cross sections are employed to characterize the charge exchange reactions between the neutral hydrazine plume mixture and the ambient hydrogen ions, and ion production is also modeled for photoionization processes. These ionization processes lead to an increase in local plasma density surrounding the spacecraft owing to a partial ionization of the relatively highâdensity hydrazine plume. Results from the steady plume simulations indicate that the formation of the hydrazine ion plume are driven by several competing mechanisms, including (1) local depletion and (2) replenishing of ambient H+ ions by charge exchange and thermal motion of 1 keV H+ from the ambient reservoir, respectively, and (3) photoionization processes. The selfâconsistent electrostatic field forces and the geostationary magnetic field have only a small influence on the dynamics of the ion plume. The unsteady plume simulations show a variation in neutral and ion plume dissipation times consistent with the variation in relative diffusion rates of the chemical species, with full H2 dissipation (below the ambient number density levels) approximately 33Â s after a 2Â s thruster burn.Key PointsSpacecraft hydrazine plume interacts with GEO via charge exchange and photoionization processesMagnetized hydrazine ion plumes envelop spacecraft, and neutral plumes convect downstreamIon and neutral plume dissipation times longer and speciesâdependentPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135463/1/jgra52433_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135463/2/jgra52433.pd
The effect of composition on the mechanism of stress-corrosion cracking of titanium alloys in nitrogen tetroxide, and aqueous and hot- salt environments Annual summary report, 1 May 1967 - 30 Apr. 1968
Stress corrosion data for titanium alloys in aqueous, hot salt, and nitrogen dioxide environment
Spontaneous radiative decay of translational levels of an atom near a dielectric surface
We study spontaneous radiative decay of translational levels of an atom in
the vicinity of a semi-infinite dielectric. We systematically derive the
microscopic dynamical equations for the spontaneous decay process. We calculate
analytically and numerically the radiative linewidths and the spontaneous
transition rates for the translational levels. The roles of the interference
between the emitted and reflected fields and of the transmission into the
evanescent modes are clearly identified. Our numerical calculations for the
silica--cesium interaction show that the radiative linewidths of the bound
excited levels with large enough but not too large vibrational quantum numbers
are moderately enhanced by the emission into the evanescent modes and those for
the deep bound levels are substantially reduced by the surface-induced red
shift of the transition frequency
Effect of Rosuvastatin on Acute Kidney Injury in Sepsis-Associated Acute Respiratory Distress Syndrome.
Background:Acute kidney injury (AKI) commonly occurs in patients with sepsis and acute respiratory distress syndrome (ARDS). Objective:To investigate whether statin treatment is protective against AKI in sepsis-associated ARDS. Design:Secondary analysis of data from Statins for Acutely Injured Lungs in Sepsis (SAILS), a randomized controlled trial that tested the impact of rosuvastatin therapy on mortality in patients with sepsis-associated ARDS. Setting:44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Patients:644 of 745 participants in SAILS who had available baseline serum creatinine data and who were not on chronic dialysis. Measurements:Our primary outcome was AKI defined using the Kidney Disease Improving Global Outcomes creatinine criteria. Randomization to rosuvastatin vs placebo was the primary predictor. Additional covariates include demographics, ARDS etiology, and severity of illness. Methods:We used multivariable logistic regression to analyze AKI outcomes in 511 individuals without AKI at randomization, and 93 with stage 1 AKI at randomization. Results:Among individuals without AKI at randomization, rosuvastatin treatment did not change the risk of AKI (adjusted odds ratio: 0.99, 95% confidence interval [CI]: 0.67-1.44). Among those with preexisting stage 1 AKI, rosuvastatin treatment was associated with an increased risk of worsening AKI (adjusted odds ratio: 3.06, 95% CI: 1.14-8.22). When serum creatinine was adjusted for cumulative fluid balance among those with preexisting stage 1 AKI, rosuvastatin was no longer associated worsening AKI (adjusted odds ratio: 1.85, 95% CI: 0.70-4.84). Limitations:Sample size, lack of urine output data, and prehospitalization baseline creatinine. Conclusion:Treatment with rosuvastatin in patients with sepsis-associated ARDS did not protect against de novo AKI or worsening of preexisting AKI
On single-photon quantum key distribution in the presence of loss
We investigate two-way and one-way single-photon quantum key distribution
(QKD) protocols in the presence of loss introduced by the quantum channel. Our
analysis is based on a simple precondition for secure QKD in each case. In
particular, the legitimate users need to prove that there exists no separable
state (in the case of two-way QKD), or that there exists no quantum state
having a symmetric extension (one-way QKD), that is compatible with the
available measurements results. We show that both criteria can be formulated as
a convex optimisation problem known as a semidefinite program, which can be
efficiently solved. Moreover, we prove that the solution to the dual
optimisation corresponds to the evaluation of an optimal witness operator that
belongs to the minimal verification set of them for the given two-way (or
one-way) QKD protocol. A positive expectation value of this optimal witness
operator states that no secret key can be distilled from the available
measurements results. We apply such analysis to several well-known
single-photon QKD protocols under losses.Comment: 14 pages, 6 figure
General linear-optical quantum state generation scheme: Applications to maximally path-entangled states
We introduce schemes for linear-optical quantum state generation. A quantum
state generator is a device that prepares a desired quantum state using product
inputs from photon sources, linear-optical networks, and postselection using
photon counters. We show that this device can be concisely described in terms
of polynomial equations and unitary constraints. We illustrate the power of
this language by applying the Grobner-basis technique along with the notion of
vacuum extensions to solve the problem of how to construct a quantum state
generator analytically for any desired state, and use methods of convex
optimization to identify bounds to success probabilities. In particular, we
disprove a conjecture concerning the preparation of the maximally
path-entangled |n,0)+|0,n) (NOON) state by providing a counterexample using
these methods, and we derive a new upper bound on the resources required for
NOON-state generation.Comment: 5 pages, 2 figure
- âŠ