9,035 research outputs found

    Disentanglement and decoherence in two-spin and three-spin systems under dephasing

    Get PDF
    We compare disentanglement and decoherence rates within two-spin and three-spin entangled systems subjected to all possible combinations of local and collective pure dephasing noise combinations. In all cases, the bipartite entanglement decay rate is found to be greater than or equal to the dephasing-decoherence rates and often significantly greater. This sharpens previous results for two-spin systems [T. Yu and J. H. Eberly Phys. Rev. B 68, 165322 (2003)] and extends them to the three-spin context.Comment: 17 page

    Optoelectronic Reservoir Computing

    Get PDF
    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.Comment: Contains main paper and two Supplementary Material

    Applications of thermal energy storage in the cement industry

    Get PDF
    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development

    Clustering and Non-Gaussian Behavior in Granular Matter

    Full text link
    We investigate the properties of a model of granular matter consisting of NN Brownian particles on a line subject to inelastic mutual collisions. This model displays a genuine thermodynamic limit for the mean values of the energy and the energy dissipation. When the typical relaxation time τ\tau associated with the Brownian process is small compared with the mean collision time τc\tau_c the spatial density is nearly homogeneous and the velocity probability distribution is gaussian. In the opposite limit ττc\tau \gg \tau_c one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability distribution strongly deviates from the gaussian one.Comment: 4 pages including 3 eps figures, LaTex, added references, corrected typos, minimally changed contents and abstract, to published in Phys.Rev.Lett. (tentatively on 28th of October, 1998

    Towards a neural hierarchy of time scales for motor control

    Get PDF
    Animals show remarkable rich motion skills which are still far from realizable with robots. Inspired by the neural circuits which generate rhythmic motion patterns in the spinal cord of all vertebrates, one main research direction points towards the use of central pattern generators in robots. On of the key advantages of this, is that the dimensionality of the control problem is reduced. In this work we investigate this further by introducing a multi-timescale control hierarchy with at its core a hierarchy of recurrent neural networks. By means of some robot experiments, we demonstrate that this hierarchy can embed any rhythmic motor signal by imitation learning. Furthermore, the proposed hierarchy allows the tracking of several high level motion properties (e.g.: amplitude and offset), which are usually observed at a slower rate than the generated motion. Although these experiments are preliminary, the results are promising and have the potential to open the door for rich motor skills and advanced control

    A Model for Force Fluctuations in Bead Packs

    Full text link
    We study theoretically the complex network of forces that is responsible for the static structure and properties of granular materials. We present detailed calculations for a model in which the fluctuations in the force distribution arise because of variations in the contact angles and the constraints imposed by the force balance on each bead of the pile. We compare our results for force distribution function for this model, including exact results for certain contact angle probability distributions, with numerical simulations of force distributions in random sphere packings. This model reproduces many aspects of the force distribution observed both in experiment and in numerical simulations of sphere packings

    Optimal Conclusive Discrimination of Two Non-orthogonal Pure Product Multipartite States Locally

    Full text link
    We consider one copy of a quantum system prepared in one of two non-orthogonal pure product states of multipartite distributed among separated parties. We show that there exist protocols which obtain optimal probability in the sense of conclusive discrimination by means of local operations and classical communications(LOCC) as good as by global operations. Also, we show a protocol which minimezes the average number of local operations. Our result implies that two product pure multipartite states might not have the non-local property though more than two can have.Comment: revtex, 3 pages, no figur

    Creep motion in a granular pile exhibiting steady surface flow

    Full text link
    We investigate experimentally granular piles exhibiting steady surface flow. Below the surface flow, it has been believed exisitence of a `frozen' bulk region, but our results show absence of such a frozen bulk. We report here that even the particles in deep layers in the bulk exhibit very slow flow and that such motion can be detected at an arbitrary depth. The mean velocity of the creep motion decays exponentially with depth, and the characteristic decay length is approximately equal to the particle-size and independent of the flow rate. It is expected that the creep motion we have seeen is observable in all sheared granular systems.Comment: 3 pages, 4 figure

    Aging and multiscaling in out of equilibrium dynamical processes in granular media

    Full text link
    In the framework of recently introduced frustrated lattice gas models, we study the out of equilibrium dynamical processes during the compaction process in granular media. We find irreversible-reversible cycles in agreement with recent experimental observations. Moreover in analogy with the phenomenology of the glass transition we find aging effects during the compaction process In particular we find that the two time density correlation function C(t,t)C(t,t') asymptotically scales as a function of the single variable ln(t)/ln(t)\ln(t')/\ln(t). This result is interpreted in terms of multiscaling properties of the system.Comment: 4 page

    Linear State Variable Dynamic Model And Estimator Design For Allison 1406 Gas Turbine Engine

    Get PDF
    This paper describes a procedure for developing a State Variable Model for the Allison T406 gas turbine engine. This linear model is useful for designing controllers using modern control techniques. The engine and V-22 rotor system is modeled around an operating point by using four state variables and one input variable. For a given power setting, it is observed that two linear models are sufficient to represent the engine dynamics over the entire flight envelope. A relationship between surge margin and the state variables is also developed. It is demonstrated that these linear models are useful in designing an estimator for accommodating hard sensor failures
    corecore