11,022 research outputs found
Disentanglement and decoherence in two-spin and three-spin systems under dephasing
We compare disentanglement and decoherence rates within two-spin and
three-spin entangled systems subjected to all possible combinations of local
and collective pure dephasing noise combinations. In all cases, the bipartite
entanglement decay rate is found to be greater than or equal to the
dephasing-decoherence rates and often significantly greater. This sharpens
previous results for two-spin systems [T. Yu and J. H. Eberly Phys. Rev. B 68,
165322 (2003)] and extends them to the three-spin context.Comment: 17 page
Applications of thermal energy storage in the cement industry
In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development
Optoelectronic Reservoir Computing
Reservoir computing is a recently introduced, highly efficient bio-inspired
approach for processing time dependent data. The basic scheme of reservoir
computing consists of a non linear recurrent dynamical system coupled to a
single input layer and a single output layer. Within these constraints many
implementations are possible. Here we report an opto-electronic implementation
of reservoir computing based on a recently proposed architecture consisting of
a single non linear node and a delay line. Our implementation is sufficiently
fast for real time information processing. We illustrate its performance on
tasks of practical importance such as nonlinear channel equalization and speech
recognition, and obtain results comparable to state of the art digital
implementations.Comment: Contains main paper and two Supplementary Material
Optimal Conclusive Discrimination of Two Non-orthogonal Pure Product Multipartite States Locally
We consider one copy of a quantum system prepared in one of two
non-orthogonal pure product states of multipartite distributed among separated
parties. We show that there exist protocols which obtain optimal probability in
the sense of conclusive discrimination by means of local operations and
classical communications(LOCC) as good as by global operations. Also, we show a
protocol which minimezes the average number of local operations. Our result
implies that two product pure multipartite states might not have the non-local
property though more than two can have.Comment: revtex, 3 pages, no figur
Creep motion in a granular pile exhibiting steady surface flow
We investigate experimentally granular piles exhibiting steady surface flow.
Below the surface flow, it has been believed exisitence of a `frozen' bulk
region, but our results show absence of such a frozen bulk. We report here that
even the particles in deep layers in the bulk exhibit very slow flow and that
such motion can be detected at an arbitrary depth. The mean velocity of the
creep motion decays exponentially with depth, and the characteristic decay
length is approximately equal to the particle-size and independent of the flow
rate. It is expected that the creep motion we have seeen is observable in all
sheared granular systems.Comment: 3 pages, 4 figure
Projectile-shape dependence of impact craters in loose granular media
We report on the penetration of cylindrical projectiles dropped from rest
into a dry, noncohesive granular medium. The cylinder length, diameter,
density, and tip shape are all explicitly varied. For deep penetrations, as
compared to the cylinder diameter, the data collapse onto a single scaling law
that varies as the 1/3 power of the total drop distance, the 1/2 power of
cylinder length, and the 1/6 power of cylinder diameter. For shallow
penetrations, the projectile shape plays a crucial role with sharper objects
penetrating deeper.Comment: 3 pages, 3 figures; experimen
Subdiffusion and cage effect in a sheared granular material
We investigate experimentally the diffusion properties of a bidimensional
bidisperse dry granular material under quasistatic cyclic shear.The comparison
of these properties with results obtained both in computer simulations of hard
spheres systems and Lenard-Jones liquids and experiments on colloidal systems
near the glass transition demonstrates a strong analogy between the behaviour
of granular matter and these systems. More specifically, we study in detail the
cage dynamics responsible for the subdiffusion in the slow relaxation regime,
and obtain the values of relevant time and length scales.Comment: 4 pages, 6 figures, submitted to PR
Experimental Demonstration of Optimal Unambiguous State Discrimination
We present the first full demonstration of unambiguous state discrimination
between non-orthogonal quantum states. Using a novel free space interferometer
we have realised the optimum quantum measurement scheme for two non-orthogonal
states of light, known as the Ivanovic-Dieks-Peres (IDP) measurement. We have
for the first time gained access to all three possible outcomes of this
measurement. All aspects of this generalised measurement scheme, including its
superiority over a standard von Neumann measurement, have been demonstrated
within 1.5% of the IDP predictions
Slowly driven sandpile formation with granular mixtures
We introduce a one-dimensional sandpile model with different particle types and an infinitesimal driving rate. The parameters for the model are the N^2 critical slopes for one type of particle on top of another. The model is trivial when N=1, but for N=2 we observe four broad classes of sandpile structure in different regions of the parameter space. We describe and explain the behaviour of each of these classes, giving quantitative analysis wherever possible. The behaviour of sandpiles with N>2 essentially consists of combinations of these four classes. We investigate the model's robustness and highlight the key areas that any experiment designed to reproduce these results should focus on
Breakdown of self-organized criticality
We introduce two sandpile models which show the same behavior of real
sandpiles, that is, an almost self-organized critical behavior for small
systems and the dominance of large avalanches as the system size increases. The
systems become fully self-organized critical, with the critical exponents of
the Bak, Tang and Wiesenfeld model, as the system parameters are changed,
showing that these systems can make a bridge between the well known theoretical
and numerical results and what is observed in real experiments. We find that a
simple mechanism determines the boundary where self-organized can or cannot
exist, which is the presence of local chaos.Comment: 3 pages, 4 figure
- …
