185 research outputs found

    Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    Full text link
    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor (LWR) licensees was 83 person-rem. This represents a 14% decrease from the value reported for 2009 (96 person-rem). The decrease in collective dose for commercial nuclear power reactors was due to an 11% decrease in total outage hours in 2010. During outages, activities involving increased radiation exposure such as refueling and maintenance are performed while the reactor is not in operation. The average annual collective dose per reactor for boiling water reactors (BWRs) was 137 personrem for 35 BWRs, and 55 person-rem for 69 pressurized water reactors (PWRs). Analyses of transient individual data indicate that 29,333 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient individuals by multiple licensees. The adjustment to account for transient individuals has been specifically noted in footnotes in the figures and tables for commercial nuclear power reactors. In 2010, the average measurable dose per individual for all licensees calculated from reported data was 0.13 rem. Although the average measurable dose per individual from data submitted by licensees was 0.13 rem, a corrected dose distribution resulted in an average measurable dose per individual of 0.17 rem

    Using Weibull Distribution Analysis to Evaluate ALARA Performance

    Get PDF
    Abstract -As Low as Reasonably Achievable (ALARA) is the underlying principle for protecting nuclear workers from potential health outcomes related to occupational radiation exposure. Radiation protection performance is currently evaluated by measures such as collective dose and average measurable dose, which do not indicate ALARA performance. The purpose of this work is to show how statistical modeling of individual doses using the Weibull distribution can provide objective supplemental performance indicators for comparing ALARA implementation among sites and for insights into ALARA practices within a site. Maximum likelihood methods were employed to estimate the Weibull shape and scale parameters used for performance indicators. The shape parameter reflects the effectiveness of maximizing the number of workers receiving lower doses and is represented as the slope of the fitted line on a Weibull probability plot. Additional performance indicators derived from the model parameters include the 99 th percentile and the exceedance fraction. When grouping sites by collective total effective dose equivalent (TEDE) and ranking by 99 th percentile with confidence intervals, differences in performance among sites can be readily identified. Applying this methodology will enable more efficient and complete evaluation of the effectiveness of ALARA implementation

    Diagnostic yield and cost analysis of electrocardiographic screening in Swiss paediatric athletes

    Full text link
    OBJECTIVES Athletes performing sports on high level are at increased risk for sudden cardiac death. This includes paediatric athletes, even though data on screening strategies in this age group remain scarce. This study aimed to assess electrocardiogram interpretation criteria in paediatric athletes and to evaluate the cost of screening. METHODS National, multicentre, retrospective, observational study on 891 athletes of paediatric age (<18 years) evaluated by history, physical examination and 12-lead electrocardiogram. The primary outcome measure was abnormal electrocardiogram findings according to the International Recommendations for Electrographic Interpretation in Athletes. The secondary outcome measure was cost of screening. RESULTS 19 athletes (2.1%) presented abnormal electrocardiogram findings requiring further investigations, mainly abnormal T-wave inversion. These 19 athletes were predominantly males, performing endurance sports with a mean volume of 10 weekly hours for a mean duration of 6 years of training. Further investigations did not identify any relevant pathology. All athletes were cleared for competition with regular follow-up. Total costs of the screening were 108,860 USD (122 USD per athlete). CONCLUSIONS Our study using the International Recommendations for Electrographic Interpretation in Athletes identified a low count of abnormal findings in paediatric athletes, yet raising substantially the cost of screening. Hence, the utility of electrocardiogram-inclusive screening of paediatric athletes remains to be elucidated by longitudinal data

    Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor

    Get PDF
    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in non-hematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP)). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects

    Inhibition of plasmin-mediated TAFI activation may affect development but not progression of abdominal aortic aneurysms

    Get PDF
    Objective: Thrombin-activatable fibrinolysis inhibitor (TAFI) reduces the breakdown of fibrin clots through its action as an indirect inhibitor of plasmin. Studies in TAFI-deficient mice have implicated a potential role for TAFI in Abdominal Aortic Aneurysm (AAA) disease. The role of TAFI inhibition on AAA formation in adult ApoE-/- mice is unknown. The aim of this paper was to investigate the effects of TAFI inhibition on AAA development and progression. Methods: Using the Angiotensin II model of AAA, male ApoE-/- mice were infused with Angiotensin II 750ng/kg/min with or without a monoclonal antibody inhibitor of plasmin-mediated activation of TAFI, MA-TCK26D6, or a competitive small molecule inhibitor of TAFI, UK-396082. Results: Inhibition of TAFI in the Angiotensin II model resulted in a decrease in the mortality associated with AAA rupture (from 40.0% to 16.6% with MA-TCK26D6 (log-rank Mantel Cox test p = 0.16), and 8.3% with UK-396082 (log-rank Mantel Cox test p = 0.05)). Inhibition of plasmin-mediated TAFI activation reduced the incidence of AAA from 52.4% to 30.0%. However, late treatment with MA-TCK26D6 once AAA were already established had no effect on the progression of AAA in this model. Conclusions: The formation of intra-mural thrombus is responsible for the dissection and early rupture in the angiotensin II model of AAA, and this process can be prevented through inhibition of TAFI. Late treatment with a TAFI inhibitor does not prevent AAA progression. These data may indicate a role for inhibition of plasmin-mediated TAFI activation in the early stages of AAA development, but not in its progression

    Crossing borders to bind proteins—a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set

    Get PDF
    A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation

    Meta Modeling for Business Process Improvement

    Get PDF
    Conducting business process improvement (BPI) initiatives is a topic of high priority for today’s companies. However, performing BPI projects has become challenging. This is due to rapidly changing customer requirements and an increase of inter-organizational business processes, which need to be considered from an end-to-end perspective. In addition, traditional BPI approaches are more and more perceived as overly complex and too resource-consuming in practice. Against this background, the paper proposes a BPI roadmap, which is an approach for systematically performing BPI projects and serves practitioners’ needs for manageable BPI methods. Based on this BPI roadmap, a domain-specific conceptual modeling method (DSMM) has been developed. The DSMM supports the efficient documentation and communication of the results that emerge during the application of the roadmap. Thus, conceptual modeling acts as a means for purposefully codifying the outcomes of a BPI project. Furthermore, a corresponding software prototype has been implemented using a meta modeling platform to assess the technical feasibility of the approach. Finally, the usability of the prototype has been empirically evaluated
    corecore