1,889 research outputs found
Early Ceramics in Anatolia: Implications for the Production and Use of the Earliest Pottery. The Evidence from Boncuklu Höyük
Fragments of possible fired clay found at Boncuklu Höyük, central Turkey, appear to derive from rudimentary vessels, despite the later ninth- and early eighth-millennium cal. bc and thus ‘Aceramic’ dates for the site. This paper will examine the evidence for such fired clay vessels at Boncuklu and consider their implications as examples of some of the earliest pottery in Anatolia. The discussion will examine contextual evidence for the role of these fragments and consider their relative rarity at the site and the implications for the marked widespread adoption of pottery in southwest Asia c. 7000–6700 cal. bc
3d Spinfoam Quantum Gravity: Matter as a Phase of the Group Field Theory
An effective field theory for matter coupled to three-dimensional quantum
gravity was recently derived in the context of spinfoam models in
hep-th/0512113. In this paper, we show how this relates to group field theories
and generalized matrix models. In the first part, we realize that the effective
field theory can be recasted as a matrix model where couplings between matrices
of different sizes can occur. In a second part, we provide a family of
classical solutions to the three-dimensional group field theory. By studying
perturbations around these solutions, we generate the dynamics of the effective
field theory. We identify a particular case which leads to the action of
hep-th/0512113 for a massive field living in a flat non-commutative space-time.
The most general solutions lead to field theories with non-linear redefinitions
of the momentum which we propose to interpret as living on curved space-times.
We conclude by discussing the possible extension to four-dimensional spinfoam
models.Comment: 17 pages, revtex4, 1 figur
Emergent non-commutative matter fields from Group Field Theory models of quantum spacetime
We offer a perspective on some recent results obtained in the context of the
group field theory approach to quantum gravity, on top of reviewing them
briefly. These concern a natural mechanism for the emergence of non-commutative
field theories for matter directly from the GFT action, in both 3 and 4
dimensions and in both Riemannian and Lorentzian signatures. As such they
represent an important step, we argue, in bridging the gap between a quantum,
discrete picture of a pre-geometric spacetime and the effective continuum
geometric physics of gravity and matter, using ideas and tools from field
theory and condensed matter analog gravity models, applied directly at the GFT
level.Comment: 13 pages, no figures; uses JPConf style; contribution to the
proceedings of the D.I.C.E. 2008 worksho
Limit on the mass of a long-lived or stable gluino
We reinterpret the generic CDF charged massive particle limit to obtain a
limit on the mass of a stable or long-lived gluino. Various sources of
uncertainty are examined. The -hadron spectrum and scattering cross sections
are modeled based on known low-energy hadron physics and the resultant
uncertainties are quantified and found to be small compared to uncertainties
from the scale dependence of the NLO pQCD production cross sections. The
largest uncertainty in the limit comes from the unknown squark mass: when the
squark -- gluino mass splitting is small, we obtain a gluino mass limit of 407
GeV, while in the limit of heavy squarks the gluino mass limit is 397 GeV. For
arbitrary (degenerate) squark masses, we obtain a lower limit of 322 GeV on the
gluino mass. These limits apply for any gluino lifetime longer than
ns, and are the most stringent limits for such a long-lived or stable gluino.Comment: 15 pages, 5 figures, accepted for publication in JHE
Coupling gauge theory to spinfoam 3d quantum gravity
We construct a spinfoam model for Yang-Mills theory coupled to quantum
gravity in three dimensional riemannian spacetime. We define the partition
function of the coupled system as a power series in g_0^2 G that can be
evaluated order by order using grasping rules and the recoupling theory. With
respect to previous attempts in the literature, this model assigns the
dynamical variables of gravity and Yang-Mills theory to the same simplices of
the spinfoam, and it thus provides transition amplitudes for the spin network
states of the canonical theory. For SU(2) Yang-Mills theory we show explicitly
that the partition function has a semiclassical limit given by the Regge
discretization of the classical Yang-Mills action.Comment: 18 page
Loop Quantum Gravity a la Aharonov-Bohm
The state space of Loop Quantum Gravity admits a decomposition into
orthogonal subspaces associated to diffeomorphism equivalence classes of
spin-network graphs. In this paper I investigate the possibility of obtaining
this state space from the quantization of a topological field theory with many
degrees of freedom. The starting point is a 3-manifold with a network of
defect-lines. A locally-flat connection on this manifold can have non-trivial
holonomy around non-contractible loops. This is in fact the mathematical origin
of the Aharonov-Bohm effect. I quantize this theory using standard field
theoretical methods. The functional integral defining the scalar product is
shown to reduce to a finite dimensional integral over moduli space. A
non-trivial measure given by the Faddeev-Popov determinant is derived. I argue
that the scalar product obtained coincides with the one used in Loop Quantum
Gravity. I provide an explicit derivation in the case of a single defect-line,
corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the
relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded
Dark Matter Capture in the First Stars: a Power Source and Limit on Stellar Mass
The annihilation of weakly interacting massive particles can provide an
important heat source for the first (Pop. III) stars, potentially leading to a
new phase of stellar evolution known as a "Dark Star". When dark matter (DM)
capture via scattering off of baryons is included, the luminosity from DM
annihilation may dominate over the luminosity due to fusion, depending on the
DM density and scattering cross-section. The influx of DM due to capture may
thus prolong the lifetime of the Dark Stars. Comparison of DM luminosity with
the Eddington luminosity for the star may constrain the stellar mass of zero
metallicity stars; in this case DM will uniquely determine the mass of the
first stars. Alternatively, if sufficiently massive Pop. III stars are found,
they might be used to bound dark matter properties.Comment: 19 pages, 4 figures, 3 Tables updated captions and graphs, corrected
grammer, and added citations revised for submission to JCA
The Machine Learning Landscape of Top Taggers
Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
Unlike most established methods they rely on low-level input, for instance
calorimeter output. While their network architectures are vastly different,
their performance is comparatively similar. In general, we find that these new
approaches are extremely powerful and great fun.Comment: Yet another tagger included
Encoding simplicial quantum geometry in group field theories
We show that a new symmetry requirement on the GFT field, in the context of
an extended GFT formalism, involving both Lie algebra and group elements,
leads, in 3d, to Feynman amplitudes with a simplicial path integral form based
on the Regge action, to a proper relation between the discrete connection and
the triad vectors appearing in it, and to a much more satisfactory and
transparent encoding of simplicial geometry already at the level of the GFT
action.Comment: 15 pages, 2 figures, RevTeX, references adde
- …
