12 research outputs found

    Higher-Order G-Quadruplex Structures and Porphyrin Ligands: An Ambiguous Relationship

    No full text
    The obtainment of tailored DNA nanostructures provided with structural and functional features useful for nanotechnological and medical applications represents one of the hottest topics in recent literature. In particular, the unusual DNA secondary structures known as G-quadruplexes, which form when guanine-rich DNA and RNA strands are annealed in the presence of physiological cations such as Na+ and K+, proved effective for the obtainment of DNA assemblies displaying in vitro anticancer1, antiviral2 or anticoagulant3 activity, mostly due to their ability to recognise and bind with high specificity and affinity their target proteins. It has been demonstrated that both the kinetics of formation and the stability of G-quadruplexes are affected not only by the nature and concentration of coordinating cations, but also by the presence of G-quadruplex ligands, including those having porphyrin-based core.4 In this communication, I will report the results of our recent studies on the effect of the addition of porphyrin-based derivatives on the stability and overall topology of G-quadruplex superstructure

    Cdc42 GTPase-activating proteins (GAPs) regulate generational inheritance of cell polarity and cell shape in fission yeast

    No full text
    The highly conserved small GTPase Cdc42 regulates polarized cell growth and morphogenesis from yeast to humans. Using both genetic and computational approaches, our findings define a novel role for Cdc42 GAP proteins in determining the morphological fate of cell progeny and ensuring consistent Cdc42 activation and growth patterns across generations. The highly conserved small GTPase Cdc42 regulates polarized cell growth and morphogenesis from yeast to humans. We previously reported that Cdc42 activation exhibits oscillatory dynamics at cell tips of Schizosaccharomyces pombe cells. Mathematical modeling suggests that this dynamic behavior enables a variety of symmetric and asymmetric Cdc42 activation distributions to coexist in cell populations. For individual wild-type cells, however, Cdc42 distribution is initially asymmetrical and becomes more symmetrical as cell volume increases, enabling bipolar growth activation. To explore whether different patterns of Cdc42 activation are possible in vivo, we examined S. pombe rga4∆ mutant cells, lacking the Cdc42 GTPase-activating protein (GAP) Rga4. We found that monopolar rga4∆ mother cells divide asymmetrically leading to the emergence of both symmetric and asymmetric Cdc42 distributions in rga4∆ daughter cells. Motivated by different hypotheses that can mathematically reproduce the unequal fate of daughter cells, we used genetic screening to identify mutants that alter the rga4∆ phenotype. We found that the unequal distribution of active Cdc42 GTPase is consistent with an unequal inheritance of another Cdc42 GAP, Rga6, in the two daughter cells. Our findings highlight the crucial role of Cdc42 GAP localization in maintaining consistent Cdc42 activation and growth patterns across generations

    Trial of Prasinezumab in Early-Stage Parkinson’s Disease

    No full text
    Background: Aggregated α-synuclein plays an important role in the pathogenesis of Parkinson's disease. The monoclonal antibody prasinezumab, directed at aggregated α-synuclein, is being studied for its effect on Parkinson's disease.Methods: In this phase 2 trial, we randomly assigned participants with early-stage Parkinson's disease in a 1:1:1 ratio to receive intravenous placebo or prasinezumab at a dose of 1500 mg or 4500 mg every 4 weeks for 52 weeks. The primary end point was the change from baseline to week 52 in the sum of scores on parts I, II, and III of the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 236, with higher scores indicating greater impairment). Secondary end points included the dopamine transporter levels in the putamen of the hemisphere ipsilateral to the clinically more affected side of the body, as measured by 123I-ioflupane single-photon-emission computed tomography (SPECT).Results: A total of 316 participants were enrolled; 105 were assigned to receive placebo, 105 to receive 1500 mg of prasinezumab, and 106 to receive 4500 mg of prasinezumab. The baseline mean MDS-UPDRS scores were 32.0 in the placebo group, 31.5 in the 1500-mg group, and 30.8 in the 4500-mg group, and mean (±SE) changes from baseline to 52 weeks were 9.4±1.2 in the placebo group, 7.4±1.2 in the 1500-mg group (difference vs. placebo, -2.0; 80% confidence interval [CI], -4.2 to 0.2; P = 0.24), and 8.8±1.2 in the 4500-mg group (difference vs. placebo, -0.6; 80% CI, -2.8 to 1.6; P = 0.72). There was no substantial difference between the active-treatment groups and the placebo group in dopamine transporter levels on SPECT. The results for most clinical secondary end points were similar in the active-treatment groups and the placebo group. Serious adverse events occurred in 6.7% of the participants in the 1500-mg group and in 7.5% of those in the 4500-mg group; infusion reactions occurred in 19.0% and 34.0%, respectively.Conclusions: Prasinezumab therapy had no meaningful effect on global or imaging measures of Parkinson's disease progression as compared with placebo and was associated with infusion reactions. (Funded by F. Hoffmann-La Roche and Prothena Biosciences; PASADENA ClinicalTrials.gov number, NCT03100149.)

    A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker

    No full text
    Malignant gliomas, the most frequent primary brain tumors, are characterized by a dismal prognosis. Reliable biomarkers complementary to neuroradiology in the differential diagnosis of gliomas and monitoring for post-surgical progression are unmet needs. Altered expression of several microRNAs in tumour tissues from patients with gliomas compared to normal brain tissue have been described, thus supporting the rationale of using microRNA-based biomarkers. Although different circulating microRNAs were proposed in association with gliomas, they have not been introduced into clinical practice so far. Blood samples were collected from patients with high and low grade gliomas, both before and after surgical resection, and the expression of miR-21, miR-222 and miR-124-3p was measured in exosomes isolated from serum. The expression levels of miR-21, miR-222 and miR-124-3p in serum exosomes of patients with high grade gliomas were significantly higher than those of low grade gliomas and healthy controls and were sharply decreased in samples obtained after surgery. The analysis of miR-21, miR-222 and miR-124-3p in serum exosomes of patients affected by gliomas can provide a minimally invasive and innovative tool to help the differential diagnosis of gliomas at their onset in the brain and predict glioma grading and non glial metastases before surgery

    The role of anthocyanins as antidiabetic agents: from molecular mechanisms to in vivo and human studies

    No full text
    corecore