3 research outputs found

    Satellite and in situ sampling mismatches: Consequences for the estimation of satellite sea surface salinity uncertainties

    Get PDF
    Validation of satellite sea surface salinity (SSS) products is typically based on comparisons with in-situ measurements at a few meters’ depth, which are mostly done at a single location and time. The difference in term of spatio-temporal resolution between the in-situ near-surface salinity and the two-dimensional satellite SSS results in a sampling mismatch uncertainty. The Climate Change Initiative (CCI) project has merged SSS from three satellite missions. Using an optimal interpolation, weekly and monthly SSS and their uncertainties are estimated at a 50 km spatial resolution over the global ocean. Over the 2016–2018 period, the mean uncertainty on weekly CCI SSS is 0.13, whereas the standard deviation of weekly CCI minus in-situ Argo salinities is 0.24. Using SSS from a high-resolution model reanalysis, we estimate the expected uncertainty due to the CCI versus Argo sampling mismatch. Most of the largest spatial variability of the satellite minus Argo salinity is observed in regions with large estimated sampling mismatch. A quantitative validation is performed by considering the statistical distribution of the CCI minus Argo salinity normalized by the sampling and retrieval uncertainties. This quantity should follow a Gaussian distribution with a standard deviation of 1, if all uncertainty contributions are properly taken into account. We find that (1) the observed differences between Argo and CCI data in dynamical regions (river plumes, fronts) are mainly due to the sampling mismatch; (2) overall, the uncertainties are well estimated in CCI version 3, much improved compared to CCI version 2. There are a few dynamical regions where discrepancies remain and where the satellite SSS, their associated uncertainties and the sampling mismatch estimates should be further validated

    Uvsq-Sat NG, a New CubeSat Pathfinder for Monitoring Earth Outgoing Energy and Greenhouse Gases

    No full text
    International audienceClimate change is undeniably one of the most pressing and critical challenges facing humanity in the 21st century. In this context, monitoring the Earth’s Energy Imbalance (EEI) is fundamental in conjunction with greenhouse gases (GHGs) in order to comprehensively understand and address climate change. The French Uvsq-Sat NG pathfinder mission addresses this issue through the implementation of a Six-Unit CubeSat, which has dimensions of 111.3 × 36.6 × 38.8 cm in its unstowed configuration. Uvsq-Sat NG is a satellite mission spearheaded by the Laboratoire Atmosphùres, Observations Spatiales (LATMOS), and supported by the International Satellite Program in Research and Education (INSPIRE). The launch of this mission is planned for 2025. One of the Uvsq-Sat NG objectives is to ensure the smooth continuity of the Earth Radiation Budget (ERB) initiated via the Uvsq-Sat and Inspire-Sat satellites. Uvsq-Sat NG seeks to achieve broadband ERB measurements using state-of-the-art yet straightforward technologies. Another goal of the Uvsq-Sat NG mission is to conduct precise and comprehensive monitoring of atmospheric gas concentrations (CO2 and CH4) on a global scale and to investigate its correlation with Earth’s Outgoing Longwave Radiation (OLR). Uvsq-Sat NG carries several payloads, including Earth Radiative Sensors (ERSs) for monitoring incoming solar radiation and outgoing terrestrial radiation. A Near-Infrared (NIR) Spectrometer is onboard to assess GHGs’ atmospheric concentrations through observations in the wavelength range of 1200 to 2000 nm. Uvsq-Sat NG also includes a high-definition camera (NanoCam) designed to capture images of the Earth in the visible range. The NanoCam will facilitate data post-processing acquired via the spectrometer by ensuring accurate geolocation of the observed scenes. It will also offer the capability of observing the Earth’s limb, thus providing the opportunity to roughly estimate the vertical temperature profile of the atmosphere. We present here the scientific objectives of the Uvsq-Sat NG mission, along with a comprehensive overview of the CubeSat platform’s concepts and payload properties as well as the mission’s current status. Furthermore, we also describe a method for the retrieval of atmospheric gas columns (CO2, CH4, O2, H2O) from the Uvsq-Sat NG NIR Spectrometer data. The retrieval is based on spectra simulated for a range of environmental conditions (surface pressure, surface reflectance, vertical temperature profile, mixing ratios of primary gases, water vapor, other trace gases, cloud and aerosol optical depth distributions) as well as spectrometer characteristics (Signal-to-Noise Ratio (SNR) and spectral resolution from 1 to 6 nm)

    The UVSQ-SAT/INSPIRESat-5 CubeSat Mission: First In-Orbit Measurements of the Earth’s Outgoing Radiation

    No full text
    International audienceUltraViolet & infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ- SAT) is a small satellite at the CubeSat standard, whose development began as one of the missions in the International Satellite Program in Research and Education (INSPIRE) consortium in 2017. UVSQ- SAT is an educational, technological and scientific pathfinder CubeSat mission dedicated to the observation of the Earth and the Sun. It was imagined, designed, produced and tested by LATMOS in collaboration with its academic and industrial partners, and the French-speaking radioamateur community. About the size of a Rubik’s Cube and weighing about 2 kg, this satellite was put in orbit in January 2021 by the SpaceX Falcon 9 launch vehicle. After briefly introducing the UVSQ-SAT mission, this paper will present the importance of measuring the Earth’s radiation budget and its energy imbalance and the scientific objectives related to its various components. Finally, the first in-orbit observations will be shown (maps of the solar radiation reflected by the Earth and of the outgoing longwave radiation at the top of the atmosphere during February 2021). UVSQ-SAT is one of the few CubeSats worldwide with a scientific goal related to climate studies. It represents a research in remote sensing technologies for Climate observation and monitoring
    corecore