8 research outputs found

    Climate-driven range extension of Amphistegina (protista, foraminiferida) : models of current and predicted future ranges

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e54443, doi:10.1371/journal.pone.0054443.Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.This work was supported by grants from the German Science Foundation (DFG; www.dfg.de) to ML and SL (LA 884/10-1, LA 884/5-1)

    Characterizing the Variability of Benthic Foraminifera in the Northeastern Gulf of Mexico following the Deepwater Horizon Event (2010-2012)

    No full text
    Following the Deepwater Horizon (DWH) event in 2010 subsurface hydrocarbon intrusions (1000-1300 m) and an order of magnitude increase in flocculent hydrocarbon deposition caused increased concentrations of hydrocarbons in continental slope sediments. This study sought to characterize the variability [density, Fisher\u27s alpha (S), equitability (E), Shannon (H)] of benthic foraminifera following the DWH event. A series of sediment cores were collected at two sites in the northeastern Gulf of Mexico from 2010 to 2012. At each site, three cores were utilized for benthic faunal analysis, organic geochemistry, and redox metal chemistry, respectively. The surface intervals (∌0-10 mm) of the sedimentary records collected in December 2010 at DSH08 and February 2011 at PCB06 were characterized by significant decreases in foraminiferal density, S, E, and H, relative to the down-core intervals as well as previous surveys. Non-metric multidimensional scaling (nMDS) analysis suggested that a 3-fold increase in polycyclic aromatic hydrocarbon (PAH) concentration in the surface interval, relative to the down-core interval, was the environmental driver of benthic foraminiferal variability. These records suggested that the benthic foraminiferal recovery time, following an event such as the DWH, was on the order of 1-2 years

    Relationship between substrate, physico-chemical parameters and foraminiferal tests in the Doñana National Park, a Biosphere Reserve in SW Spain

    No full text
    A multidisciplinar analysis of sediments collected in diferent environments of the Doñana National Park (Guadalquivir estuary, SW Spain) provides an overview of the textural, mineralogical and physico-chemical parameters that control the distribution of benthic foraminiferal tests in this Biosphere Reserve. These microorganisms are absent in the fne quartzitic sands that constitute the substrate of temporary ponds with brief hydroperiods located in the dune systems and spits, as well as in other ponds with low conductivities or hypersaline conditions located in the inner marshlands or near the Guadalquivir river banks. Dead benthic foraminifera are mainly found on phyllosilicate-rich, silty-clayey substrates. The taphonomic analysis of the main species (Ammonia tepida, Haynesina germanica, Trochammina infata, Entzia macrescens) points to its deposit in situ. Cluster analysis permits to delimitate six foraminiferal assemblages. Cluster II (A. tepida+H. germanica) is the dominant assemblage in the central ponds and the margins of the main channels, while cluster IV (T. infata+E. macrescens) is restricted to some ponds located on the high marsh and cluster VI (Ammonia beccarii+Quinqueloculina spp.) is abundant on external beaches. Tidal fuxes cause the transport of these last marine benthic species and some plaktonic forms both to the inner areas of the estuary and to these beaches.info:eu-repo/semantics/publishedVersio

    Colonisation and bioerosion of experimental substrates by benthic foraminifers from euphotic to aphotic depths (Kosterfjord, SW Sweden)

    No full text
    In the cold-temperate setting of the Swedish Kosterfjord area, experimental carbonate and PVC substrates were deployed for a 6, 12 and 24-month duration along a transect from euphotic to aphotic depths in order to study bioerosion and carbonate accretion patterns. Among the organisms that contribute to the latter by secreting calcareous skeletons, epibenthic foraminiferans represent a major component, both in terms of diversity (a dozen species) as well as in the number of individuals (exceeding 50,000 individuals per m2 at certain depths). The by far dominating species were found to be Cibicides lobatulus and the agglutinating Lituotuba lituiformis, along with smaller numbers of Planorbulina mediterranensis, Tholosina vesicularis and Nubecularia lucifuga. The foraminiferal distribution exhibits a pronounced abundance maximum in shallow waters at 7 and especially 15 m and a maximum in diversity at 15-50 m water depth. Some of the foraminiferans encountered, such as Cibicides lobatulus and the rare Gypsina vesicularis, were found to contribute also to the bioerosion of the calcareous substrates by etching shallow attachment scars. These prominent traces witness the former presence of benthic foraminiferans on fossil to Recent hardgrounds, inferring a potential applicability as an in situ proxy where tests are not preserved. Estimated minimum carbonate production rates for the dominant Cibicides lobatulus reach a maximum of 0.326 g/m2/year with the highest rates occurring at 7 to 30 m water depth. Carbonate production rates are up to two magnitudes higher on the PVC (0-0.326 g/m2/year) than on the carbonate substrates (0-0.010 g/m2/year) and are considerably higher than estimates previously reported from the western Baltic
    corecore