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Abstract

Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the
poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range
expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb
recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow
water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We
have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger
symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently
observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly
progressing southwestward, closely approaching Port Edward (South Africa) at 31uS. To project future species distributions,
we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our
model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the
entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km
year21, and are projected to lead to a total southward range expansion of 267 km, or 2.4u latitude, in the year 2100. Our
results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising
water temperatures and are beneficiaries of global climate change.
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Introduction

Sea surface temperature is a key environmental predictor that

affects the biogeographic distribution of many organisms. Global

climate change is likely to alter the range of areas potentially

suitable for habitation [1–4]. Among the predicted effects of rising

temperature is the range expansion of species into areas where

they previously did not exist [5–8]. The expansion of species

ranges along their cooler boundaries appears to be a prominent

consequence of the global warming trend [7,9]. A rapidly

increasing number of studies have shown ‘‘fingerprints’’ of recent

climate-driven changes in various biological systems. This includes

range shifts of species towards higher latitudes, higher elevation

and earlier springtime phenologies [9–12]. To date, however, only

a limited number of studies have addressed rates of range shifts in

marine biotas [13].

Our studies concern the distribution and biogeographic range

expansion of unicellular, larger symbiont-bearing foraminifera in

modern oceans [4,14]. Larger symbiont-bearing foraminifera have

a circum-tropical distribution and are indicative of warm tropical

and subtropical waters [14,15]. Temperature has long been

considered as the primary factor regulating their latitudinal

distribution [14]. For the majority of these foraminifera, the lower

temperature limit is 18 to 20uC [14]. Relatively low temperatures

are tolerated by species of the genus Amphistegina and their

distributional range is currently delimited by the 13.8u winter

isotherm [4,16,17].

Among the larger symbiont-bearing foraminifera, amphistegi-

nids are of particular interest because they display the widest

latitudinal ranges in all oceans [14]. Today, amphisteginids have

been found as far as 40u North and 31u South [14,18]. They are

among the most conspicuous and ubiquitous foraminifera on coral

reefs and tropical carbonate shelves [14], where they often have

been referred to as living sands [19]. As key carbonate producers

[20–22], amphisteginids contribute significantly to carbonate

substrate stability, growth of reefal structures, and habitat

formation [20–24]. Recent studies have shown a widening of the

tropical belts with far-reaching changes for oceans, ecosystems,

and the biosphere [25–27]. A distributional range expansion of

amphisteginid foraminifera due to global warming could trigger

substantial changes in ecosystem functioning (e.g. changes in

species diversity, carbonate production, impact on native biota

[4]).
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Recently, amphisteginid foraminifera were shown to expand

their biogeographic range in the Mediterranean where a rapid

progression northwestwards now shows them closely approaching

the Adriatic and Tyrrhenian seas [4,18,28,29]. In addition, their

increasing abundance and rapid proliferation of invasive amphis-

teginids were shown to impair the dynamic equilibrium of

established foraminiferal biotas, ultimately replacing diverse

assemblages by rapidly spreading monocultures [4].

To date, the overwhelming majority of studies on organismal

range shifts in response to climate change focus on terrestrial

species [30]. In contrast, comparatively few studies have addressed

range shifts in marine systems [31–35] although the impact of

climate-driven range expansion is considered the ‘‘next frontier’’

in climate change research [36]. Understanding, monitoring, and

predicting range expansions are, therefore, vital for effective

management and conservation [37,38]. Consequently, there is a

pressing need to improve our ability to predict these phenomena.

This requires the deployment of modeling approaches that can be

successfully utilized at a range of spatial scales. Here we apply a

species-distribution model (SDM) to assess potential range

expansions of Amphistegina spp. under current and future climate

conditions (for the years 2050, 2100) along the eastern coast of

southern Africa. The coastline from equatorial Somalia along

Kenya, Tanzania, and Mozambique to Cape Town, in South

Africa, displays a distinct latitudinal sea-surface temperature

gradient that is ideally suited to apply SDM and to project range

shifts in the future. In addition, the Indian Ocean has been

undergoing a pronounced multidecadal warming trend [39] that is

likely to affect the biogeographic ranges of species living along the

eastern coastline of Africa.

Species distribution models have been applied previously to

project range expansions of amphisteginids in the northern

hemisphere including the Mediterranean Sea [4]. In this study,

we provide the first modeling approach for foraminifera from

localities of the southern hemisphere to assess the rates of range

expansions under rapid environmental change. The model uses an

environmental envelope of information from localities where

amphisteginids are currently known to occur. The physical niche

constraints were compiled from all presently available data

containing the environmental conditions for population dynamics.

The environmental variables that define the current niche of east

African amphisteginids then were used to develop correlative

models to extrapolate potential occurrences at sites where the

environmental constraints are projected to match physiological

constraints under current and future conditions. We also

calculated the rate of amphisteginid range expansion along

latitude based on historical and recent occurrence records, and

compared them to rates currently observed for amphisteginids in

the Mediterranean. Rates of latitudinal range expansion in

Amphistegina were then compared with rates recorded in recent

reviews on the expansion of terrestrial and marine taxa

[10,13,40,41]. Using this modeling approach, we project the

result on climate scenarios for the years 2050 and 2100, and

compute the extent of potential range expansion and the probable

speed of future range shifts.

Materials and Methods

Species Records and Environmental Data
The species distribution modeling and range expansion analyses

of Amphistegina is based on an extensive sample set that was

collected recently (2004–2012) between equatorial sites of

Somalia/Kenya, and Cape Town, in South Africa (no specific

permits were required for the described field studies). We compiled

all amphisteginid species occurrences and collected additional

citations from primary literature and review papers. The

biogeographic survey covers a latitudinal range between 1.2u S

at Somalia and 34u S at Cape Town (Figure 1A). Literature

occurrences were extracted from historical and recent studies [42–

67]. Occurrences of amphisteginid foraminifera were recorded

from a total of 118 sites, and include 82 sites from our own

sampling and 36 literature records. Our own samples were taken

by scuba-diving or by a Van Veen grab at depths between 0 and

200 m, and include both live and dead foraminifera. Occurrence

records of dead individuals were only included when the test(s) did

not show any signs of transport. All records are situated within

unique grid cells derived from DIVA-GIS [68].

Environmental data were obtained from the BIO-ORACLE

dataset designed for species distribution modeling [69]. The data

package contains a global set of 23 variables obtained through

remotely sensed and in situ measured data. Raster grid-cells of

BIO-ORACLE have a resolution of 5 arcmin or 9.2 km. We used

the mean sea surface temperature (uC), diffuse attenuation (an

indicator of water turbidity, m21), the minimum chlorophyll a

content (mg/m3), the annual sea surface temperature range

(difference between maximum and minimum, uC) and the

maximum photosynthetically active radiation (Einstein m22 day)

as biologically relevant predictor sets for SDM modeling.

The SDM scenarios for range expansion of Amphistegina for the

year 2050 and 2100 are based on predictions provided by the

Fourth Assessment Report of the Intergovernmental Panel on

Climate Change [70]. We used the response of the 30-year

average SST between 2070–2099 and 1961–1990 as an approx-

imation for the rise in ocean temperature until 2100. For the

model for 2050, we adopt a 50% decrease of the 2100 temperature

approximation. The winter prediction was presumed to conform

to SSTmin and the summer prediction was used for SSTmax. The

projected climate change datasets then were applied to our

georeferenced grid-cell format.

Computation of the SDM
We used Maxent 3.3.3 k for SDM modeling and projections

onto future climate conditions [71,72]. The program uses a grid-

based, machine-learning algorithm following the principles of

maximum entropy [73]. It is a presence-only method, generating

pseudo-absences from a defined background, ideally covering

areas potentially colonizable for the taxon [74]. The Maxent

modeling begins with a uniform distribution and successively fits

the distribution to the data (occurrence records and environmental

variables). By iteratively permuting and varying the input

variables, Maxent repeatedly tests the predictive capability and

improves the model. This is measured as log likelihood or ‘‘model

gain’’ that records increasing distances from the uniform

distribution. A full description and details of the procedure can

be found in Elith et al. [75].

To predict the potential and future amphisteginid distribution, a

total of 10,055 random background points were automatically

selected by Maxent from the biogeographic range of Amphistegina

spp. along the eastern coast of Africa. Maxent then predicts the

suitability of a habitat, representing the potential distribution of

the taxon. For clarity, the logistic output format with suitability

values ranging from 0 (unsuitable) to 1 (optimal) was used [76].

The probability of the taxon’s presence at sites with ‘‘typical’’

environmental conditions is set to 0.5 by default [75]. The

modeling process was performed with 30 replicates and the

average predictions across all replicates were used for further

processing.

Climate-Driven Range Extension of Amphistegina
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Model Evaluation
The quality of the SDM provided by Maxent can be tested

by calculating the Area Under the Curve (AUC) and refers to

the Receiver Operation Characteristic curve [72]. The AUC

reassess the ability of the model to distinguish presences from

(pseudo-) absences. Occurrence records were randomly split into

training (70%) and test samples (30%). This non-parametric

method is recommended for ecological applications [77,78].

Values of AUC range from 0.5 for models with no better than

random predictability to 1.0 for models supplying perfect SDM

prediction. According to the classification of Swets [79], AUC

values .0.9 describe ‘‘very good’’, .0.8–0.9 ‘‘good’’, and

.0.7–0.8 ‘‘useful’’ discrimination ability. The continuous

probability surfaces of the SDMs were subsequently converted

into presence/absence maps using the ‘‘Equal training sensitivity

and specificity logistic threshold’’ as recommended by Liu et al.

[80]. The impact of individual environmental predictors for the

resulting model is specified as the percent contribution of every

variable. Additional evaluations are provided by the permuta-

tion importance, which displays the drop in AUC values

(normalized to percentages) when the values of every variable

on training presence and background data are randomly

permuted. Furthermore, a jackknife test is implemented in

Maxent, which allows the analysis of the predictability potential

of individual variables. The model is repeatedly created by

using variables in isolation to examine how well the results fit

the known model gain (both on training and test data) and the

AUC values. To assess the importance of individual predictors,

each variable then is omitted, and model gain and AUC value

are evaluated. A decrease in model gain results in an

approximation of the model to the uniform distribution.

Results

Computed data provide ‘‘very good’’ AUC values (AUCtrain-

ing: 0.9703; AUCtest: 0.9513) for our SDM. The lowest Maxent

value obtained at the training records is 0.0239. Analysis of the

relative contributions of environmental variables reveals the

following hierarchy in descending order of explanatory power

(Table 1): Mean sea-surface temperature (SSTmean) has the

highest explanatory power with 41.78%, followed by mean

diffuse attenuation (DA, 25.11%), minimum chlorophyll

(CHLO, 23.07%), sea-surface temperature range (SSTrange,

6.99%), and maximum photosynthetically available radiation

(PAR, 3.04%). The permutation importance of individual

variables reveals a similar picture (Table 1). The jackknife tests

show that omitting SSTmean from the model results in the

sharpest drop in model gain and AUC values, followed by DA,

CHLO, SSTrange, and PAR (Table 2). When used in isolation,

DA and SSTmean provided the best results (Table 2).

All amphisteginid occurrence records modeled in the area are

displayed in Figure 1A. The current biogeographic range covers

the area from tropical sites at the equator off Somalia (1uN at

Somalia) southward along the coastlines of Kenya, Tanzania,

Mozambique, and south to Shelley Beach in South Africa at 31uS.

The distance from the equator at Somalia to the southernmost

occurrence record covers ,3410 km (1u= 110 km). Offshore

island occurrence records of amphisteginid foraminifera from the

southwestern Indian Ocean include sites off Madagascar,

Reunion, Mauritius, Rodrigues, the Seychelles [54], Glorioso

Islands [48], and Mayotte [45].

Figure 1B displays the potential distribution for amphisteginid

foraminifera as computed from SDM under current climate

conditions. The potential distribution of the genus correlates

well with the actual biogeographic range. The distribution

model reveals, however, that amphisteginid foraminifera may

potentially expand their coastal range occurrences further south

to Port Edward (31uS), which is located 18.34 km south from

the southernmost record at Shelley Beach (30.84uS). The

potential distribution thus exceeds the known realized distribu-

tion by only a few kilometers. The model also shows that the

areas of highest suitability comprise the coastal regions between

1uN (Mogadishu) and 17uS (Quelimane). Lower habitat

suitability values are indicated for the areas between the

Zambezi River Delta (18.1uS), Beira (20uS), and the Save River

Delta (21uS).

The SDM computed under climate conditions projected for the

year 2050 projects a substantial southward shift of habitat

suitability for amphisteginid foraminifera (Figure 2A). The model

projects a coastal range expansion south to Kei Mouth, located at

32.65uS. The prognosticated range extension to Kei Mouth is an

additional 1.641u ( = 182.68 km) south of the potential range of

Amphistegina at Port Edwards, and 201.12 km south of the current

southernmost occurrence record at Shelley Beach. Climate

conditions projected for the year 2050 indicate that SST increases

from 23.26uC to 24.51uC for the Shelley Beach location. In the

2050 model, the areas of highest suitability comprise the coastal

regions between 1uN (Mogadishu) and 17u5S (Quelimane), and

29uS (Mtunzini) and 31.4uS (Port St. Johns). Areas of low

suitability values continue to be between the Zambezi River Delta

(17.5uS), Beira, and the Save River mouth (21uS).

The SDM computed under climate conditions projected for the

year 2100 predicts a temperature rise of 2.5uC and an additional

range expansion of amphisteginid foraminifera (Figure 2B). The

model indicates a southward expansion along the coast of South

Africa down to Kayers̀s Beach, located at 33.22uS. The modeled

range expansion to Kayers̀s Beach marks an additional latitude

extension of 0.5754u ( = 64.05 km), compared to the potential

range of Amphistegina for the year 2050. The model computed for

climate conditions for the year 2100 indicates a total southward

range expansion of 265.07 km ( = 2.4u), when compared to the

current distribution limit of amphisteginid foraminifera.

In the model for the year 2100, highest suitability areas for

amphisteginid foraminifera are between the equatorial coastal

regions off Somalia (Mogadishu at 1uN) and Quelimane near the

northernmost end of the Zambezi Delta (18uS). Low habitat

suitability values were computed for coastal areas between major

rivers, Zambezi and the Save (18uS –21uS), and around the

Maputo Harbor area (26uS).

Figure 1. Amphistegina occurrence records and SDM for under current climate conditions. (A) Amphistegina occurrence records used to
create the Species Distribution Model. Sites marked with a triangle are new records collected by this working group between 2004 and 2012, those
with circles are sites from published data, and those with an x are sites where Amphistegina were absent (our data). Insert shows the southernmost
occurrence record of Amphistegina at Shelley Beach (30.84uS) south of Durban. (B) Species distribution model for Amphistegina spp. with 2012-
occurrence records (triangles) and potential distribution under current climate conditions as projected by the SD-model. Habitat suitability is
indicated by individual Maxent values ranging from high (1) to extremely low (0.2). The model projects potential settling sites expand to Port Edward
(31uS) south of Shelly Beach. Note that habitat suitability south of Shelly Beach is deflected away from the coast by the southward flowing Agulhas
Current.
doi:10.1371/journal.pone.0054443.g001
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Biogeographic Range Expansions
Occurrence records of amphisteginid foraminifera indicate that

the current biogeographic range covers the coastal area from the

equator at Somalia 1uN to Shelley Beach (31uS) in South Africa,

and a multitude of offshore islands in the Indian Ocean

(Figure 1A). The biogeographic range of east African amphiste-

ginid foraminifera attests that species of this genus have a tropical

to subtropical distribution delimited by the 14uC winter isotherm

[14].

East African amphisteginid foraminifera were reported first by

d’Orbingy [81], Wright [82,83], and Möbius [42] from tropical

locations off Madagascar, Mauritius, and the Seychelles. Later,

Heron-Allen & Earland [45] recorded three species of Amphistegina

from the nearshore Kerimba Archipelago between 11.5uS and

13uS. Records of amphisteginids from the coast of Kenya (between

3u and 4uS) were published by Pereira [54], Banner & Pereira

[84], and Lévy et al. [57]. Amphisteginid foraminifera also were

reported by Braga [46], Moura [48] and Perry [64] from the area

between Inhambane (24uS) and Maputo (26uS). The southernmost

occurrence records of Amphistegina published to date, are from the

St. Lucia (28.23uS) and Mgeni Estuaries (29.48uS) in South Africa

(28.23uS) [59,61]. Their presence here was attributed to the warm

temperatures that were carried southward by the warm Agulhas

Current [60]. Extensive sampling in the St. Lucia region in 1972

and 1973 by Phleger [51,52] did not reveal any amphisteginid

foraminifers, suggesting that the amphisteginid records of Wright

et al. [61] from the same location in 1990 were recent arrivals at

that time. South of Durban, at 29.53uS, occurrences of living

amphisteginid foraminifera previously were not reported even

though extensive sampling was undertaken [44,62,63,85–87].

Belderson’s report [88] of amphisteginid foraminifera from

Durban Bay could not be verified by Albani [85], but suggests

that this taxon has repeatedly tried to colonize habitable

environments along the coast. Recent and extensive sampling

campaigns (2004–2005) conducted by this working group reveal

numerous new amphisteginid occurrences as far south as Shelley

Beach (30.84uS). This indicates a southward biogeographic range

extension over ,1.3u latitude [ = 145 km, from the Mgeni

Table 1. Variable contribution and permutation importance for predictors used during model training.

Contribution [%] Permutation importance [%]

Mean sea-surface temperature 41.78 47.19

Mean diffuse attenuation 25.11 30.97

Minimum chlorophyll a 23.07 16.26

Maximum photosynthetically available radiation 3.04 1.39

Sea-surface temperature range 6.99 4.18

Note high values for mean sea surface temperature, mean diffuse attenuation, and minimum chlorophyll indicating their importance as prime factors regulating the
distribution and habitat suitability of amphisteginid foraminifera.
Model iterations using the maximum winter surface temperatures show an increasing range expansion, but not to the extent of the model presented here. Mean SST
accounts for nearly 42% of the modeled effect, while SST range contributes only 7% to the variation. Hence the model presented exhibits the maximum range extension
that can be predicted but it is realized that amphisteginids may not fully occupy this potential niche in the future as they do today.
Pilot studies involving the present range prediction of amphisteginids along the African coast using minimum chlorophyll a values parallel the empirical
biogeographical distribution. This parameter was retained in the SDM with the understanding that maximum chlorophyll a values would impact the foraminiferal
ranges.
doi:10.1371/journal.pone.0054443.t001

Table 2 Results of the Jackknife test for training and test data.

Training gain Test gain AUC values

Species distribution model for Amphistegina spp. 2.2215 2.1563 0.9513

Model without variable:

Mean sea-surface temperature 1.4824 1.3361 0.8897

Mean diffuse attenuation 2.1529 2.1274 0.9509

Minimum chlorophyll a 2.1804 2.148 0.9505

Maximum photosynthetically available radiation 2.1852 2.1442 0.951

Sea-surface temperature range 2.0586 2.038 0.9459

Model with variable in isolation:

Mean sea-surface temperature 0.5427 0.6459 0.8018

Mean diffuse attenuation 0.6616 0.5953 0.7959

Minimum chlorophyll a 0.6413 0.5856 0.7923

Maximum photosynthetically available radiation 0.3108 0.2944 0.6908

Sea-surface temperature range 0.2637 0.3123 0.7012

Note strong decrease in gain and AUC values for mean sea-surface temperature, sea-surface temperature range, and mean diffuse attenuation when omitted from the
SDM for Amphistegina. When variables are used in isolation the values are most similar to the original gain and AUC for mean sea surface temperature, mean diffuse
attenuation, and minimum chlorophyll. This indicates their important role in regulating the biogeographic distribution of amphisteginid foraminifera.
doi:10.1371/journal.pone.0054443.t002
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Estuaries [60] to Shelley Beach (Langer, unpubl. data]) between

1987 and 2005, equivalent to a range extension of , 8 km year21.

The range expansion projected by the SDM under climate

conditions of the year 2050 (Figure 2A) prognosticates the

occurrence of amphisteginid foraminifera south to Kei Mouth

(located at 32.65uS). The predicted range extension to Kei Mouth

is an additional 201.12 km south of the current southernmost

occurrence record at Shelley Beach (30.84uS). This would

constitute an average range shift of ,5.29 km year21 if the range

shift is realized in the year 2050. The model for 2050 also projects

a general increase in habitat suitability for amphisteginid

foraminifera along the east coast of Africa (Figure 2A). Suitability

is particularly increased from the equator at Somalia, along the

coast of Kenya and Tanzania, down to Angoche in Mozambique

(16.2uS). The SDM also shows an increase in habitat suitability

from Richards Bay (28.4uS) to Port Edward (31.0uS) in South

Africa.

For climate conditions predicted for the year 2100 (Figure 2B),

the species distribution model suggests a total range expansion

over 2.38u latitude southwards to Kayers̀s Beach at 33.22uS
(,242 km). If realized in 2100 and referenced to the current

southernmost occurrence record at Shelley Beach, the marine

range expansion of amphisteginids would occur at an average rate

of ,2.75 km year21. The Amphistegina SDM generated for climate

conditions in the year 2100 shows increasing habitat suitability

over large stretches of coastline from the equator at Somalia to

Kayers̀s Beach at 33.22uS in South Africa. Areas of lower habitat

suitability are indicated for the regions around the major river

mouth off the Rufiji, Rovuma, Lurio, Zambezi, Save, and

Limpopo rivers. Low values of habitat suitability are also displayed

around Beira, and between Maputo in Mozambique and Richards

Bay in South Africa.

Discussion

Average global temperature has increased over the past century

(0.7460.18uC) and overall global warming is predicted to continue

to rise between 2.0 and 4.5uC over the next 100 years [89]. Global

warming and the extension of climate belts are likely to allow

substantial range expansion for species with tropical or subtropical

origins. This study reports the first SDM approach to project

potential range expansion of foraminifera under current and

future climate conditions. The computed SDM values affecting the

biogeographic range reveal that sea surface temperature had the

highest explanatory power among individual variable contribu-

tions (51%), followed by mean diffuse attenuation (25%) and

minimum chlorophyll (23%). This agrees well with 1.) observations

in the Mediterranean Sea where temperature has been identified

as the key agent governing the range expansion of amphisteginid

foraminifera [4] and 2.) with recent findings that temperature

alone can readily predict the large scale geographic structure of

shallow biogeographic schemes with 53–99% accuracy [90]. The

Mediterranean range shift of amphisteginid foraminifera is

attributed to the ongoing warming trend in the northern

hemisphere. Research conducted on foraminifera from the east

coast of Africa provides a baseline chronology illustrating an

analogous spread of amphisteginids towards higher latitudes in the

southern hemisphere.

Based on historical occurrence records, the range shift of coastal

amphisteginid foraminifera was calculated to occur at an average

rate of , 8 km year21 between 1987 and 2012. The average rate

prognosticated under climate conditions for the year 2050 and

2100 was computed to continue at an average rate of , 5.29 km

year21 (for the year 2050) and at , 2.75 km year21 until the year

2100. However, it needs to be noted that the actual rate of marine

range expansions in our case is likely to be higher. This is because

the latitudinal calculations underestimate the true distances along

east-westward oriented coastlines. In addition, the southward-

flowing, warm Agulhas Current is deflected away from the coast

by the cold Benguela Current, diverting potentially suitable

habitats from coastal regions into open ocean territory.

The calculated range-expansion rates for Amphistegina from the

east coast of Africa are at the lower end of average range shifts

currently known for marine plankton, invertebrates, and verte-

brates [13]. Sorte et al. [13] have calculated that the average rate

shift in marine organisms occurs at 19.0 km year21. They also

noted that the vast majority of range shifts in marine species were

in poleward direction, consistent with global climate change

scenarios. Rate shifts computed for amphisteginid range expansion

in the northern hemisphere (Mediterranean Sea) were found to

occur at an average rate of 12.5 km year21, concordant with

expansion rates of other Lessepsian migrants in the Mediterranean

[91]. Higher range-expansion rates computed for the Mediterra-

nean Sea, however, appear not to be related to sea surface current

velocities when compared to the southwestward flowing Agulhas

current along the coast of east Africa, which is among the fastest

flowing ocean currents (peaks speed up to 2 m/s). The computed

range-expansion rates for amphisteginid foraminifera are up to an

order of magnitude faster than rates for terrestrial range shifts

(0.6160.24 km year21) [13]. This observation commonly is

attributed to the more open nature of marine versus terrestrial

populations [13,92]. Because of their abundance and high

reproductive rates [93,94], foraminifera are generally expected

to adapt fast to warming climates. The comparatively low rates of

range expansion recorded in this study highlight the importance of

incorporating additional information about range-limiting factors

in native communities, environmental tolerances, and species

interactions.

Water temperature previously has been invoked as the major

factor controlling the latitudinal extension of amphisteginid

foraminifera [4,14,16]. In particular, Langer & Hottinger [14]

have demonstrated that the ranges of larger symbiont-bearing

foraminifera are limited by the minimum winter temperature

extremes. Indeed, sea surface temperature data compiled from the

Indian Ocean Thermal Archive (IOTA) show a significant late

20th Century Indian Ocean warming (0.5–1.0uC) [39,95].

Figure 2. Species distribution models for the years 2050 and 2100. (A) Species distribution model for Amphistegina spp. projected under
climate conditions for the year 2050. Habitat suitability is indicated by individual Maxent values ranging from high (1) to extremely low (0.2). Note
that the model projects potential settling sites expand southward to Kei Mouth (32.65uS) south of Port Edward (inset). The model also projects
increasing habitat suitability around Durban and between Angoche and the area north of Maputo. Note that habitat suitability south of Kei Mouth is
deflected away from the coast by the southward flowing Agulhas Current. Range expansion to higher latitudes and habitat suitability is mainly
governed by climate-driven temperature increases. (B) Species distribution model for Amphistegina spp. projected under climate conditions for the
year 2100. Habitat suitability is indicated by individual Maxent values ranging from high (1) to extremely low (0.2). Note that the model projects
potential settling sites expand southward to Kayser’s Beach Mouth (33.22uS) south of Durban (inset). The model projects a general increase of habitat
suitability from the equator to the area north of Maputo and south of Durban. Note that habitat suitability south of Kayser’s Beach is deflected away
from the coast by the southward flowing Agulhas Current.
doi:10.1371/journal.pone.0054443.g002
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Although warming has affected all oceans [96,97], rising

temperatures are more pronounced in the Indian Ocean and

recently reached their highest values in 120,000 years [98,99]. The

observed southward directed range expansion of thermophile

amphisteginids along the eastern coast of Africa makes the

ongoing warming trend the most likely agent facilitating the

taxon’s current range expansion.

Paleontological evidence indicates that amphisteginid and other

larger foraminifera cope particularly well with rising water

temperatures and widening of the tropical/subtropical climate

belt [100–107]. Miocene specimens are reported from Poland and

the Vienna Basin at paleolatitudes between 48–50uN [101].

Cretaceous and Eocene records [101] of larger symbiont-bearing

foraminifera show a range extension from the equator to almost

50uN and 40uS [101,106]. In contrast, larger symbiont-bearing

foraminifera from modern oceans are mostly limited between 40u
North and 30u South, or the 20uC surface-water isotherms during

the summer. The latitudinal range extensions during the Miocene,

Eocene, and Cretaceous were attributed to higher surface-water

temperatures during warmer climates similar to those affecting the

poleward extension of current regimes [101,106]. The range

extensions and mass abundances of larger foraminifera during

climate periods with increased atmospheric CO2 [108–110]

suggest that foraminifera are, potentially, beneficiaries of cli-

mate-driven temperature changes (e.g., nummulit, orbitolinid or

alveolinid mass deposits, see also [22,111,112]. Global changes are

not solely restricted to temperature increases. In addition to

warming, the pH in oceans is currently decreasing due to the

increased load of atmospheric carbon dioxide compared to pre-

industrial times. This decline in pH, or ocean acidification (OA),

likely will impact all marine organisms but is expected to most

significantly affect organisms that secrete calcium carbonate hard

parts (skeletons, shells, tests). Thus, while warming may permit

pole-ward expansion of habitat for some species, OA may cause

this expansion to be more challenging than if warming alone were

occurring. In the case of Amphistegina gibbosa, laboratory experi-

ments indicate that the survival of this species is not negatively

impacted after 6-week incubation in 1000 or 2000 ppm pCO2

compared to ambient control incubations [113]. Additionally,

some specimens also reproduced in the enriched CO2 incubations,

suggesting that amphisteginid dispersal, fitness, and range changes

may not be significantly hampered by OA. Similar findings were

obtained from experiments on Amphistegina radiata [114].

The SDM computed under current climate conditions is closely

congruent with the occurrence records of modern amphisteginids

indicating that a few easily acquired oceanographic parameters are

sufficient to predict the taxon’s biogeographic range. This robust,

first-order link between the environmental parameters and

biogeographic ranges indicate that model-based predictions may

be applied to project large-scale system-level changes. Our

analyses also suggest that the exceptionally detailed and well-

preserved fossil record of foraminifera may be used to reconstruct

the general paleoceanographic structure of ancient shallow seas.

Such an application permits the use of fossil data in projected

model scenarios of shelf and coastal ecosystems in a warm future.

Effects on Ecosystems
As noted, amphisteginid foraminifera are among the most

prolific foraminiferal species and contribute significantly to the

stabilization of reefal frameworks worldwide [20–22]. They are

prominent producers of calcium carbonate within the world’s

oceans where they often add more than 1 kg of CaCO3/m2/year

to reef carbonate sediments [20–22]. In some of the east African

reefs, amphisteginid foraminifers frequently represent up to 50%

or more of the foraminiferal fauna (Langer, unpubl. data),

implying that they play a prominent role in reef ecosystems.

The range expansion of amphisteginid foraminifers in the

Mediterranean Sea was shown to lead to a drastic reduction of

foraminiferal species diversity, increased carbonate production,

substrate modifications and, at some sites, to the establishment of

amphisteginid monocultures [4,115]. Because of their abundance,

ubiquity and appearance in monocultures and as prominent

carbonate producers with substrate modifying capabilities, am-

phisteginid foraminifera can be considered ecosystem engineers in

the sense of Jones et al. [116,117]. While the immediate impact of

such changes appears to be obvious, the resilience of ecosystems to

the disruptive forces of key invaders remains to be determined.

Given their prominent environmental role, rapid biogeographic

range expansion, and impact on native ecosystems, amphisteginid

range expansion and invasion into new territory are likely to

trigger changes in ecosystem functioning [4]. With predicted

environmental suitability increasing southward, further studies

monitoring environmental changes and modification in commu-

nity structure along the eastern coast of southern Africa are

required.

In conclusion, the Indian Ocean is undergoing a warming trend

that affects the biogeographic range of the native biota and

ecosystem functioning. Amphisteginid foraminifera are among the

key species that currently are expanding their range and rapidly

progress southwestwards, closely approaching the coastline of Port

Edwards in South Africa. Temperature has been identified as the

most important physical oceanographic variable controlling their

spatial distribution, congruent with analogous observations in

Mediterranean amphisteginids [4] and numerous other marine

ectotherms [3,13,90,118,119].

The computed rates of range shifts (between 2.75 and 8.0 km

year21) are at the lower end of average marine range-expansion

spectrum and project a total range shift of 2.4u latitude for the year

2100. Examination of the rates of range shift and modeling

potential range shift under future climate conditions provides a

first approximation that helps to identify sites and magnitudes of

potential impact. This, in turn, is vital to assess climate-change

impact on coastal marine biotas and will be of use in directing

monitoring efforts. It is anticipated that climate warming and the

widening of the tropical/subtropical belt will foster the poleward

migration of amphisteginid and other larger symbiont-bearing

foraminifera. Modern and paleontological evidence of foraminif-

eral range expansions indicate that some species of symbiont-

bearing foraminifera benefit from rising temperatures and become

predominant producers of calcium carbonate under conditions of

global climate warming.
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42. Möbius KA (1880) Foraminiferen von Mauritius. In: Möbius KA, Richters F,
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118. Lüning K (1990) Seaweeds: Their Environment, Biogeography and Ecophys-

iology. New York: Wiley-Interscience. p. 527.

119. Schmidt-Nielsen K (1990) Temperature effects. In: Schmidt-Nielsen K, editor.

Animal Physiology: Adaptation and Environment. New York: Cambridge

University Press. 217–239.

Climate-Driven Range Extension of Amphistegina

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e54443


