12 research outputs found

    Discovery of Potent Positive Allosteric Modulators of the α3β2 Nicotinic Acetylcholine Receptor by a Chemical Space Walk in ChEMBL

    No full text
    While a plethora of ligands are known for the well studied ?7 and ?4?2 nicotinic acetylcholine receptor (nAChR), only very few ligands address the related ?3?2 nAChR expressed in the central nervous system and at the neuromuscular junction. Starting with the public database ChEMBL organized in the chemical space of Molecular Quantum Numbers (MQN, a series of 42 integer value descriptors of molecular structure), a visual survey of nearest neighbors of the ?7 nAChR partial agonist N-(3R)-1- azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide (PNU-282,987) pointed to N-(2-halobenzyl)-3-aminoquinuclidines as possible nAChR modulators. This simple "chemical space walk" was performed using a web-browser available at www.gdb.unibe.ch. Electrophysiological recordings revealed that these ligands represent a new and to date most potent class of positive allosteric modulators (PAMs) of the ?3?2 nAChR, which also exert significant effects in vivo. The present discovery highlights the value of surveying chemical space neighbors of known drugs within public databases to uncover new pharmacology. ďż˝ 2014 American Chemical Society

    Insights into the structural determinants required for high-affinity binding of chiral cyclopropane-containing ligands to α4β2-nicotinic acetylcholine receptors: an integrated approach to behaviorally active nicotinic ligands

    Get PDF
    Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a cocrystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine a previous model of the human α4β2- nAChR, thus possibly providing a better understanding of the structure of the human receptor. To validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogues of compound 5. The most promising compound, 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral end points in the rodent studies. © 2012 American Chemical Society
    corecore